Что япония подарила миру

На протяжении всей истории японцы создали некоторые из наиболее важных изобретений для человеческой цивилизации. От оружия до электроники — их изобретения вошли в нашу культуру, сферу развлечений и повседневную жизнь. Японцы стали пионерами в технологическом секторе, создав устройства, которые

На протяжении всей истории японцы создали некоторые из наиболее важных изобретений для человеческой цивилизации. От оружия до электроники — их изобретения вошли в нашу культуру, сферу развлечений и повседневную жизнь. Японцы стали пионерами в технологическом секторе, создав устройства, которые сегодня мы воспринимаем как должное. Можно с уверенностью сказать, что без них мир был бы совсем другим. Интересно узнать, каков вклад Японии в развитие общества? Вот 25 самых невероятных японских изобретений за всю историю.

25. Рикша

Фото: commons.wikimedia.org

Видели ли вы эти тележки, запряженные людьми, которые перевозят других людей? Это умное и простое изобретение называют рикшей, и впервые оно было придумано японцами в 1860 году. В то время это был недорогой и популярный вид транспорта. Это также отличный способ оставаться в форме.

24. Лапша быстрого приготовления

Фото: commons.wikimedia.org

Любите лапшу быстрого приготовления? Тогда вы можете поблагодарить японцев за это удивительное изобретение. Лапшу придумал Момофуку Андо (Momofuku Ando), глядя на разрушения, вызванные Второй мировой войной. Лапша быстрого приготовления Чикин Рамэн (Chikin Ramen) впервые появилась на прилавках в 1958 году, и общежития колледжей уже никогда больше не были прежними.

23. Роман

Фото: WikipediaCommons.com

«Повесть о Гэндзи» (The Tale of Genji), написанная в 11 веке в Японии, считается первым когда-либо написанным романом. Его написала женщина по имени Мурасаки Шикибу (Murasaki Shikibu), и это была история о красивом аристократе и его многочисленных романах.

22. Катана

Фото: commons.wikimedia.org

Хотя считается, что более ранняя версия меча катана попала в Японию из Китая, та катана, которую мы знаем сегодня, более легкая и мастерски обработанная японцами, использовалась воинами-самураями. Впервые она появилась в период Муромати с 1392-1573 гг. н. э.

21. Фарфор имари

Фото: WikipediaCommons.com

Изобретенный в Японии в 16 веке, фарфор имари был популярным продуктом, который экспортировала Голландская Восточно-Йндийская торговая компания. Этот материал обнаружил и производил из него изделия фарфоровых дел мастер Ри Сампэи (Ri Sampei).

20. Микрокомпьютер

Фото: WikipediaCommons.com

Первым микрокомпьютером стал Sord SMP80/08, придуманный и разработанный в 1972 году. Хотя он потерпел неудачу и так никогда не появился в продаже, это был большой скачок вперед в компьютерной области.

19. Плеер

Фото: commons.wikimedia.org

В то время как сама технология уже использовалась некоторое время, компания Sony предложила поместить кассеты в компактную коробку, что позволило слушать музыку на ходу. Они назвали свое изобретение Walkman, а на рынке плеер появился в 1979 году. Впервые в истории данное изобретение помогло кассетам перегнать виниловые пластинки по количеству продаж.

18. Экономичное производство

Фото: commons.wikimedia.org

Разработанная компанией Toyota в Японии после Второй мировой войны, система экономичного производства, или концепция «Точно в срок» (Just In Time system) появилась в результате изучения производственной системы Ford, но была скорректирована в соответствии с потребностями Японии. Целью системы было сокращение отходов при сохранении производительности. Сейчас это довольно распространенная концепция.

17. CDs, DVDs, и Blu-Ray

Фото: commons.wikimedia.org

Компакт-диски были изобретены одновременно Sony и Philips (голландская компания). Компании обсудили более мелкие детали, но в конечном итоге согласились на тот диск, который у нас есть сегодня – диаметром 115-миллиметров и рассчитанный на 74 минуты данных. Позже, Sony будет продолжать развивать как DVD, так и вести войну против HD-DVD с помощью своих превосходных Blu-Ray дисков.

16. Программируемая музыкальная драм-машина

Фото: commons.wikimedia.org

Изобретенный Икутаро Какехаши (Ikutaro Kakehashi), Roland TR-808 был первой программируемой драм-машиной. Когда он попал на рынок в 1980 году, то произвел революцию в музыке и был особенно популярен благодаря своему бас-барабану.

15. Караоке

Фото: Pixabay.com

Караоке-машина была изобретена Дайсуке Иноуэ (Daisuke Inoue) в 1969 году, но она не вышла на рынок до 1971. Сначала караоке не вызвала большого восторга, уже через некоторое время заполучить ее мечтали все бары Японии. Но хотя Дайсуке был автором изобретения, он никогда не изобретал термина «караоке». Это название произошло от фразы «Кара okesutura», что означает «пустой оркестр». Название сократили до «караоке», и оно прижилось.

14. Эмоджи

Фото: pixabay

За смайлики у вас на телефоне следует поблагодарить японцев. Эмоджи были созданы Шигетака Курита (Shigetaka Kurita) и его командой в компании NTT DoCoMo, когда он разочаровался в том, что для передачи информации используется исключительно текст. В качестве решения были разработаны образы, чтобы отображать эмоции.

13. Видеокамера

Фото: commons.wikimedia.org

В то время как портативные устройства записи видео существовали уже с 50-х годов, в 1983 году компания Sony выпустила самую первую видеокамеру. Она писала все на ленту Betamax и делала запись фильмов намного проще, чем было до этого.

12. Электрическая рисоварка

Фото: commons.wikimedia.org

Первые электрические рисоварки были изобретены компанией Toshiba в 1955 году. К 1960 году устройство произвело революцию в домашних хозяйствах, а к 1970, рисоварки продолжали совершенствоваться с помощью микрокомпьютеров, способных регулировать температуру.

11. Телефон с камерой

Фото: commons.wikimedia.org

Сегодня камера на мобильном телефоне – привычное дело, но еще в 1999 году, это было неслыханно. Японская компания Kyocera Corporation выпустила первый мобильный телефон с камерой. Они назвали его VisualPhone VP-210, и он мог хранить до 20 изображений JPEG.

10. Переносной аппарат для ЭКГ

Фото: Pixabay.com

Для тех, у кого проблемы с сердцем, благодаря японцам носить аппарат для ЭКГ с собой стало намного легче. В 1937 году Таро Такеми (Taro Takemi) изобрел первый портативный прибор для измерения электрокардиограммы. Многие из основных его принципов используются и сегодня.

9. Карманный калькулятор

Фото: commons.wikimedia.org

Калькуляторы были в ходу уже очень давно, но первый карманный калькулятор на основе микрочипа был изобретен японской компанией Busicom в 1970 году. Он назывался Busicom LE-120 Handy.

8. Голубое светодиодное освещение

Фото: commons.wikimedia.org

Три японских изобретателя, Исаму Акасаки (Isamu Akasaki), Хироси Амано (Hiroshi Amano) и Шудзи Накамура (Shuji Nakamura), изобрели первый голубой светодиод в 1990-х годах, что привело к развитию всех светодиодных продуктов, которые есть сегодня. Позже они получили Нобелевскую премию за это изобретение.

7. Литиевая батарея

Фото: commons.wikimedia.org

В Японии Асахи Касеи (Asahi Kasei) проделал значительную работу по созданию технологии перезаряжаемых литий-ионных аккумуляторов, изменив ранее проведенные на эту тему исследования, а корпорация Sony позволила технологии выйти на потребительский рынок.

6. QR-код

Фото: MaxPixel.com

Хотя сегодня вы можете использовать QR-код, чтобы получить информацию о компании или продукте, первоначально он был изобретен в 1994 году дочерней компанией Toyota под названием Denso Wave, чтобы помочь в процессе производства.

5. CRISPR

Фото: commons.wikimedia.org

Хотя фактически никто не «изобретал» последовательность CRISPR — мощную технику редактирования генов, в 1987 году Йошизуми Ишино (Yoshizumi Ishino) и его команда в университете Осаки обнаружили ее. К сожалению, в то время они действительно не понимали, что они обнаружили. Однако их исследование заложило основу для того, что должно было произойти в дальнейшем.

4. 3-D принтеры

Фото: commons.wikimedia.org

3D-печать может показаться новым явлением, но данная технология существует уже некоторое время. В 1981 году в Нагойском муниципальном промышленном научно-исследовательском институте (Nagoya Municipal Industrial Research Institute) Хидео Кодама (Hideo Kodama) опубликовал свою идею быстрой системы создания прототипов с использованием фотополимеров. Это была первая концепция 3D-принтера.

3. Скоростной поезд

Фото: Pixabay.com

В США после изобретения автомобиля поезда утратили популярность. Однако в Японии они вернулись на «большую дорогу». в 1964 году Япония изобрела и представила первую высокоскоростную железнодорожную линию, или скоростной поезд, следовавший из Токио в Осаку. Это изобретение получило всемирную популярность, особенно в густонаселенных районах, нуждающихся в быстром массовом транспорте.

2. Flash-память

Фото: maxpixel

Флэш-память позволяет в вашем мобильном телефоне и смартфоне сохранять такие данные, как музыка, фотографии и видео. Без нее вы можете распрощаться со своим телефоном. Фуджио Масуока (Fujio Masuoka), работавший в то время в Toshiba, изобрел флэш-память в 1984 году, чтобы решить проблему запоминания и хранения данных, вне зависимости от того, включено ли устройство или выключено.

1. Роботы андроиды

Фото: commons.wikimedia.org

Разработанный в университете Васеда (Waseda University) в Японии, первый в мире робот андроид назывался WABOT-1. Он был сделан в 1970, у него были искусственные уши, рот, и глаза, и он мог поднимать предметы.

Перепечатка статей разрешена только при наличии активной индексируемой ссылки на BUGAGA.RU

Пережив военные времена, Япония начала активно развиваться: темпы развития были не просто высокими – невероятными. Однако в 1990-х гг. страна переживала экономический кризис, подъем после которого начался только в 2003 г. Локомотивом изначального развития стал экспорт в Китай. Сейчас главный капитал государства составляют вложения во внутреннюю экономику.

Япония, несмотря на свою верность традициям, занимает одно из лидирующих мест среди стран, которые создают новейшие технологии.

Причины популярности японских ноу-хау

Девушка разработчик

Ноу-хау Японии широко используются в мире (Россией, Колумбией и другими странами), на них продаются лицензии и патенты. Почему именно страна восходящего солнца славится своими изобретениями и новшествами?

Экономическая политика Японии способствовала процветанию ноу-хау, создав систему государственной поддержки: специальные комитеты, комиссии, корпорации, обеспечивающие опору и финансовую помощь ученым, инженерам, изобретателям.

Правительство страны считает, что благодаря глобализации увеличивается шанс попасть на рынки других государств, поэтому усилия по созданию таких организаций оправданы.

Качество новых продуктов обеспечивают и обязательные условия для разработчиков:

  • Сжатые сроки на инженерно-конструкторские работы;
  • Быстрое производственное освоение разработанного проекта;
  • Качественная продукция.

Представляем 20 ноу-хау, которые Япония подарила миру

Одежда

Ветровка с вентилятором от компании Kuchofuku

Ветровка с вентилятором Kuchofuku

Свежий тренд Японии – одежда с… вентилятором. В стране действует ограничение на потребление электроэнергии, поэтому использовать охладительные системы на полную мощность в течение всего жаркого дня японцы не могут. Работодатели Японии даже разрешают своим сотрудникам приходить на работу, не придерживаясь строгого дресс-кода: костюма с пиджаком и галстуком.

Компания Kuchofuku придумала, как не пользоваться кондиционером и при этом не утомляться от жары: вентилируемая одежда. «Вентилируемая» означает в данном случае не «с вентиляцией», а «с вентилятором». Ветровка действительно оснащена двумя вентиляторами небольшого размера, которые работают от аккумуляторов в течение одиннадцати часов. Управлять такой одеждой можно при помощи пульта, выбирая и самостоятельно устанавливая необходимый температурный режим. Такая одежда может обеспечивать владельца нужной порцией прохлады в течение дня. Стоимость вентилируемой куртки составляет примерно 140 долларов. Также компания разработала обувь, матрасы, подушки со встроенными вентиляторами.

Бегуны в форме

одежда asics

Компанией ASICS (г. Кобе, Япония) была разработана уникальная экипировка для бега, помогающая поддерживать мышцы. Специальные вставки оказывают направленную компрессионную поддержку в ключевых зонах. Такая спортивная одежда помогает тренировать дольше и с большей эффективностью, а кроме того, визуально уменьшает объемы тела — даже не идеальная фигура выглядит более спортивной и оформленной. Производитель обещает уменьшение риска травмы, улучшение осанки и снижение нагрузки на мышцы.

Строительство

Дом из пенопласта от компании Japan Dome House Co

Дом из пенопласта Japan Dome House Co

Японская строительная компания Japan Dome House Co внесла новшества в сферу строительства домов, предложив пенопласт в качестве строительного материала. Компания аргументирует свое предложение уникальными качествами пенопласта:

  • Не ржавеет;
  • Не гниет;
  • Обладает хорошими теплоизоляционными свойствами, что уменьшает затраты на отопление и охлаждение дома;
  • Позволяет быстро возводить строение;
  • Компактен для хранения и транспортировки.

Материалы для строительства такого дома продаются набором, а собрать его можно самостоятельно, потратив на это совсем немного времени (2–3 часа). Дом выглядит миниатюрным, но внутри достаточно просторно. Площадь дома из пенопласта составляет около 44 м2. При желании можно увеличить жилую площадь, соединив несколько домов. Для создания перехода из одного дома в другой предусмотрены отдельные запчасти. Приобрести набор для сборки дома из пенопласта можно за 30 тыс. долларов.

Капсульный отель

Капсульный отель

Нововведение, получившее известность в отельном бизнесе, – капсульная гостиница, разработка Кисё Куракавы. Номера в ней представляют собой капсулу площадью 2 м2 и один метр высотой. В помещении находится телевизор, розетка и система настройки температуру воздуха. Стоимость номера составляет 30 долларов в сутки. Неудивительно, что это ноу-хау возникло в крохотной Японии. Впрочем, отели-капсулы появляются и в других странах.

Торговый автомат – замена магазину

японские торговые автоматы

Японцам не нужно посещать торговые центры и продуктовые магазины, потому что практически на каждом углу можно увидеть автомат с самыми разными товарами. Только в Японии так много торговых автоматов и такой обширный ассортимент товара в них. В автомате можно приобрести яйца, овощи, фрукты, напитки, нижнее белье, мороженое, игрушки, букеты цветов, футболку, галстук… Так, автоматы корпорации Sanyo Electric без труда заменят гипермаркет и кулинарию: батарейки и чай, замороженные полуфабрикаты и горячие блюда. Самодостаточный магазин без продавца – разве это не будущее сегодня?

Дом на колесах и с амортизаторами

японский Дом на колесах

Многие города Японии расположены в сейсмической зоне, поэтому постройки часто страдают от землетрясений. Специалисты Института исследования землетрясений разработали способ строительства дома, который сможет устоять при бедствии. Такое здание должно быть разделено на две части: фундамент и дом, а между этими частями располагается шариковый подшипник. Дом двигается относительно фундамента, что сводит к минимуму трение, и толчки ощущаются значительно меньше.

Здоровье

Аппарат для диагностики рака

Медицинское Лабораторное иследование

Японский ученый-медик доктор Мори создал уникальный аппарат, с помощью которого можно выявить рак. Врачи способны распознать рак желудка, толстой кишки и поджелудочной железы на ранних стадиях. Ранее технологии диагностики рака печени были только в США – но там диагностировали исключительно поздние стадии заболевания.

Для проведения исследования используется пластина из специального сплава, а показателем злокачественной опухоли является кровь человека, излучающая свет. Для проведения процедуры требуется три минуты.

Вакцинация от малярии

Вакцинация от малярии

Японские ученые сделали заявление, что комары могут приносить пользу человечеству. Малярия – одно из опасных заболеваний, переносчиками которого являются насекомые-кровососы. Однако к инфекционным заболеваниям можно выработать иммунитет, и малярия не исключение, как доказали опыты.

Вакцинация – хорошая альтернатива лекарствам для небогатых стран, к тому же этот способ не только бесплатный, но и безболезненный. Проводить вакцинацию будут сами «вредители»: медики выводят генетически подготовленных насекомых, которые и будут переносчиками вакцины – своими укусами комары будут впрыскивать вакцину Mosquirix в человеческий организм.

Транспорт

Авто с беспроводным приведением электромотора в действие

Концепт новой Тойоты

Ученые Токийского университета предлагают беспроводные технологии, которые способны привести электромотор в рабочее состояние. Для этого используется способ магнитного резонанса: электромагнитные катушки, которые устанавливаются в моторе, находятся в десяти сантиметрах друг от друга.

Пока что разработка проходит испытания; проводятся исследования, направленные на повышение удельной мощности мотора и улучшение индукционных свойств. После проведения этих работ планируется массовая продажа авто с беспроводным электродвигателем.

Транспортер размером с планшет

транспорт Kuniako Saito

Инженер Kuniako Saito и его команда разработали максимально компактное средство передвижения. Транспортер имеет вид скейтборда, его вес составляет 2–3 килограмма. Ноу-хау работает от литиевой батареи, его основа изготовлена из алюминия и способна выдержать до ста двадцати килограммов. Изобретатель утверждает, что с помощью этого устройства можно передвигаться и перевозить грузы. Гаджет способен развить скорость до десяти километров в час. Трех часов зарядки хватает на преодоление двенадцати километров.

Питание

Очки для похудения

Высокие технологии стоят на страже здоровья и красивой фигуры. Токийский университет в лице Мичитака Хиросэ и его команды создал необычный гаджет, который может помочь уменьшить порцию, – очки, способные зрительно увеличить пищу; при этом размер столовых приборов остается реальным.

Зрение обманывает мозг, и чувство сытости наступает быстрее. Очки для похудения имеют и совсем уж фантастическую опцию: возможность придавать простому печенью запах любимого блюда. Можно употреблять продукты для похудения и наслаждаться привычным лакомством. Свободная продажа изобретения ещё, к сожалению, не распространена. Очки имеют достаточно неудобную громоздкую конструкцию, поэтому нуждаются в усовершенствовании — в связи с этим точная стоимость аппарата пока неизвестна.

Разноцветные бургеры

Разноцветные бургеры

Сегодня черной булочкой в бургере уже никого не удивишь – в 2017 в любом модном заведении можно было попробовать странное на вид блюдо. А вот в Японии в моду вошли полностью цветные бургеры: черные и красные. Здесь окрашивается не только булочка, но и сыр. Красный цвет получается за счет использования томатного порошка, а добиться черного цвета помогают чернила кальмара (для сыра) и угольная пыль бамбука (для выпечки). Мясная составляющая вполне традиционная: курица или говядина.

Любопытно, что тренд был задан мировой сетью в Burger King: они создали цветную новинку специально для японских ресторанов сети.

Ресторан без кухни

«Консервный» ресторан «Mr. Kanso» открылся в Осаке и быстро завоевал популярность: сеть разрослась до 40 заведений по всей стране.

ресторан Mr. Kanso

Интерьер «Mr. Kanso» больше напоминает магазин, нежели ресторан: вдоль стен стоят полки, заставленные банками с консервами: рыбными, мясными, овощными – ассортимент действительно богатый. Ресторан полюбился и местным жителям, и туристам, став настоящей достопримечательностью.



Промышленность

Транзисторы на магнитах

Транзисторы на магнитах

Такащи Цучия, Казуя Терабе и исследовательский центр WPI-MANA для запуска движения ионов вместо привычного электрического оборудования применили магнит. Магнитом у них получилось управлять двухслойным транзистором EDLT, который применяется для полупроводников, настраивающих плотность носителей заряда. Управление ионами с помощью магнитов может стать основанием для появления высокопроизводительных магнитных электролитов.

Электроэнергия из лапши

Электроэнергия из лапши

В Японии набирает популярность добыча электроэнергии альтернативными способами. Так, отходы от изготовления известной японской лапши удон отправляют на переработку для получения энергии. Корпорация Хиоди собирает лапшу по всем ресторанам страны и перерабатывает на специальной электростанции. При обработке образуется метан и этанол, которые нужны для производства электроэнергии. С помощью такой электростанции получается выработать около 180 000 кв. в год. Этого хватает, чтобы обеспечить светом пятьдесят семей.

Сельское хозяйство

Управление полями смартфоном

смартфон SoftBank

Японская медиакопорация SoftBank провела исследования на рисовых полях – на них установили датчики, позволяющие контролировать ряд показателей, в том числе:

  • Количество питательных веществ в почве;
  • Уровень воды;
  • Температуру;
  • Влажность.

Поступившие данные используются при создании фермерских хозяйств и корректировке их работы. Датчики управляются при помощи смартфона, поэтому информация всегда доступна и фермеры проинформированы об уровне воды и температуре на полях.

Удаленный мониторинг животных

Система Petfit

Японские операторы телекоммуникаций NTT Docomo предлагают удаленно проводить мониторинг животных, которые находится на территории фермерства. Для этого в тело животного помещается датчик, который способен отслеживать температуру тела. С помощью датчика можно узнать, когда у животных произошло зачатие потомства.

Программа работает через смартфон.

Камера для контроля состояния растений

Камера для растений KDDI

Компания KDDI разработала камеру, которая способна контролировать состояние растений, высаженных в контейнер. Система, установленная на смартфоне, уведомляет владельца о необходимости орошения.

Огурцы необычной формы

японские огурцы необычной формы

Для тех кто хочет видеть на своих плантациях огурцы необычной формы, японский фермер Макото Койке придумал специальные формочки-колбочки в виде разных фигур. Огурец растет внутри колбы и принимает её форму, а при нарезке получаются симпатичные звезды или сердечки. Одно из проявлений японской любви ко всему милому: каваи, как сказали бы сами японцы.

Быт

Радиоуправляемая швабра

японская радиоуправляемая швабра

В Японии решили облегчить процесс уборки: именно здесь была изобретена радиоуправляемая швабра Remote Control Mop. Управление шваброй осуществляется с помощью контроллера, схожего с гейпадом игровой консоли. Стоимость такой швабры составляет 29 долларов.

Япония – уникальное и во многом загадочное для европейцев государство, которое таит множество полезных и удивительных открытий и изобретений.

В планах Японии — объединение науки и производства, строительство специальных городов, в которых будет сосредоточено наукоемкое производство. Правительство в Японии как нигде в мире нацелено на внедрение инноваций в быт и производство, интеллектуализацию всего хозяйства страны.



Гляди, чего придумали...

Гляди, чего придумали…

Япония – страна, которая задаёт моду на гаджеты во всём мире. Именно здесь были придуманы многие устройства от оружия до электроники, которыми пользуется весь мир. Японские изобретения проникли в современную культуру, развлечения и повседневную жизнь. Можно с уверенностью сказать, что мир не был бы таким, каким он есть, без изобретений Страны восходящего солнца.

1. Рикша

Японское изобретение: рикша.

Японское изобретение: рикша.

Все видели эти повозки, которые тянет, взявшись за оглобли, человек. Это умное и простое изобретение называется рикшей, и оно было впервые изобретено японцами в 1860 году. В то время это был недорогой и популярный вид транспорта. А такси? Оно появилось гораздо позже.

2. Роман

Японское изобретение: роман.

Японское изобретение: роман.

«Повесть о Гэндзи», написанная в Японии в XI веке, считается первым романом в истории. Он был написан женщиной по имени Мурасаки Сикибу и повествует о прекрасном аристократе и его многочисленных романах.

3. Микрокомпьютер

Японское изобретение: микрокомпьютер.

Японское изобретение: микрокомпьютер.

Sord SMP80 / 08, изобретенный и разработанный в 1972 году, был первым микрокомпьютером. Хотя он так и не пошел в массовое производство, это был большой шаг в развитии компьютеров.

4. Плеер

Японское изобретение: плеер.

Японское изобретение: плеер.

Хотя подобная технология уже существовала в течение некоторого времени, Sony выяснила, как «упаковать» кассету с лентой в компактную коробку, что позволило слушать музыку на ходу. Компания назвала свое устройство «Walkman» и выпустила его в 1979 году.

5. Компакт-диски, DVD-диски и Blu-Ray

Японское изобретение: компакт-диски, DVD-диски и Blu-Ray.

Японское изобретение: компакт-диски, DVD-диски и Blu-Ray.

Компакт-диски были изобретены японцами из Sony и голландцами из Philips. Компании обсудили вместе свои разработки и пришли к решению выпускать унифицированные 115-миллиметровые диски, на которые помещалось 74 минуты музыки. Позже Sony продолжила свои разработки, выпустив DVD, а также ввязалась в войну технологий против HD-DVD со своим диском Blu-Ray.

6. Эмодзи

Японское изобретение: эмодзи.

Японское изобретение: эмодзи.

Именно японцев нужно поблагодарить за смайлики-эмодзи на телефоне. Созданный Сигэтака Куритой и его командой в компании NTT DoCoMo, язык идеограмм и смайликов использовался в качестве способа передачи информации и эмоций.

7. Видеокамера

Японское изобретение: видеокамера.

Японское изобретение: видеокамера.

Хотя карманные устройства для записи видео существовали с 1950-х годов, Sony выпустила самую первую видеокамеру в 1983 году. Она записывала все на ленту Betamax и была намного проще, чем предыдущие способы записи фильмов.

8. Камера для телефона

Японское изобретение: камера для телефона.

Японское изобретение: камера для телефона.

Сегодня наличие камеры на мобильном телефоне является обычным делом, но еще в 1999 году это было чем-то неслыханным. Японская компания Kyocera Corporation выпустила первый сотовый телефон с камерой VisualPhone VP-210, который мог хранить до 20 изображений в формате JPEG.

9. Карманный калькулятор

Японское изобретение: карманный калькулятор.

Японское изобретение: карманный калькулятор.

Калькуляторы существуют уже в течение долгого времени. Но первый карманный калькулятор на микрочипе был изобретен японской компанией Busicom в 1970 году. Он назывался Busicom LE-120 Handy.

10. QR-код

Японское изобретение: QR-код.

Японское изобретение: QR-код.

Сегодня любой может использовать QR-код, чтобы получить информацию о компании или продукте. Изначально эта технология была изобретена в 1994 году дочерней компанией Toyota под названием Denso Wave.

11. Литий-ионная батарея

Японское изобретение: литий-ионная батарея.

Японское изобретение: литий-ионная батарея.

В Японии компания Asahi Kasei проделала значительную работу над технологией перезаряжаемой литий-ионной батареи, в корне изменив ранее проведенные исследования. С помощью Sony Corporation она выпустила эту технологию на потребительский рынок.

12. CRISPR

Японское изобретение: «CRISPR».

Японское изобретение: «CRISPR».

Хотя технически никто не «изобрел» универсальный метод редактирования генов CRISPR, в 1987 году, первыми его обнаружили Ёсидзуми Исино и его команда в Университете Осаки. К сожалению, в то время они не понимали, что они обнаружили. Однако их исследование заложило основу для будущего.

13. 3D-печать

Японское изобретение: 3D-печать.

Японское изобретение: 3D-печать.

3D-печать может показаться новым изобретением, но эта технология существует уже 37 лет. В 1981 году в Нагойском муниципальном промышленном научно-исследовательском институте Хидео Кодама опубликовал свою идею о быстрой системе прототипирования с использованием фотополимеров. Это была первая концепция 3D-принтера.

14. Флэш-память

Японское изобретение: флэш-память.

Японское изобретение: флэш-память.

Флэш-память позволяет современным смартфонам хранить данные, такие как музыка, фотографии и видео. Фудзио Масуока, который в то время работал в Toshiba, изобрел флеш-память в 1984 году, чтобы решить проблему хранения данных даже на выключенном устройстве.

15. Скоростной поезд

Японское изобретение: скоростной поезд.

Японское изобретение: скоростной поезд.

Поезда в Европе и Соединенных Штатах частично утратили свою важность после начала массового производства автомобилей. Однако в Японии все было не так. В Японии была изобретена и открыта первая высокоскоростная железнодорожная линия, а первый «поезд-пуля» отправился из Токио в Осаку в 1964 году. Это изобретение завоевало всемирную популярность, особенно в густонаселенных районах, нуждающихся в быстром массовом транзите.

БОНУС

Добро пожаловать в ХХI век.

Добро пожаловать в ХХI век.

А не так давно появился появился «умный» японский робот-унитаз, с которым из туалета даже выходить не захочется .

This is the history of science and technology in modern Japan.

Science[edit]

[icon]

This section needs expansion. You can help by adding to it. (May 2017)

In the natural sciences, the number of Japanese winners of the Nobel Prize has been second only to the United States in the 21st century, for contributions made in the 20th century. On the list of countries by research and development spending, Japan is third on the list, behind the United States and China.

Chemistry[edit]

Frontier Molecular Orbital Theory

In 1952, Kenichi Fukui published a paper in the Journal of Chemical Physics titled «A molecular theory of reactivity in aromatic hydrocarbons.»[1] He later received the 1981 Nobel Prize in Chemistry for his investigations into the mechanisms of chemical reactions, with his prize-winning work focused on the role of frontier orbitals in chemical reactions, specifically that molecules share loosely bonded electrons which occupy the frontier orbitals, that is the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO).[2][3][4][5][6][7][8]

Chirally catalyzed hydrogenation

Ryōji Noyori was awarded the 2001 Nobel Prize in Chemistry for his «work on chirally catalyzed hydrogenation reactions»[9] in 1968.[10]

Proteins and enzymes

In the 1960s and 1970s, green fluorescent proteins (GFP), along with the separate luminescent protein aequorin (an enzyme that catalyzes the breakdown of luciferin, releasing light), was first purified from Aequorea victoria and its properties studied by Osamu Shimomura.[11] He was awarded the 2008 Nobel Prize in Chemistry «for the discovery and development of the green fluorescent protein, GFP».[12]

Koichi Tanaka was awarded the 2003 Nobel Prize in Chemistry for the development of soft laser desorption, «methods for identification and structure analyses of biological macromolecules» and for «soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules».[13] In 1987, he demonstrated that laser pulses could blast apart large protein molecules so that ions in gaseous form are produced.[14]

Conductive polymers

Hideki Shirakawa was awarded the 2000 Nobel Prize in Chemistry «for the discovery and development of conductive polymers».[15]

Mathematics[edit]

In the 1930s, while studying switching circuits, NEC engineer Akira Nakashima independently discovered Boolean algebra, which he was unaware of until 1938. In a series of papers published from 1934 to 1936, he formulated a two-valued Boolean algebra as a way to analyze and design circuits by algebraic means in terms of logic gates.[16][17]

Medicine[edit]

In a landmark series of experiments beginning in 1976, Susumu Tonegawa showed that genetic material can rearrange itself to form the vast array of available antibodies.[18] He later received the 1987 Nobel Prize in Physiology or Medicine «for his discovery of the genetic principle for generation of antibody diversity.»[19]

Physics[edit]

Particle physics

Hideki Yukawa predicted the existence of mesons in 1934, for which he later received the 1949 Nobel Prize in Physics.[20]
yes
Yoichiro Nambu was awarded the 2008 Nobel Prize in Physics for his 1960 discovery of the mechanism of spontaneous broken symmetry in subatomic physics, related at first to the strong interaction’s chiral symmetry (chiral symmetry breaking) and later to the electroweak interaction and Higgs mechanism.[21]

The bottom quark is a product in almost all top quark decays, and is a frequent decay product for the Higgs boson. The bottom quark was theorized in 1973 by physicists Makoto Kobayashi and Toshihide Maskawa to explain CP violation.[22] Toshihide Maskawa and Makoto Kobayashi’s 1973 article, «CP Violation in the Renormalizable Theory of Weak Interaction»,[22] is the fourth most cited high energy physics paper of all time as of 2010.[23] They discovered the origin of the explicit breaking of CP symmetry in the weak interactions. The Cabibbo–Kobayashi–Maskawa matrix, which defines the mixing parameters between quarks, was the result of this work. Kobayashi and Maskawa were awarded the 2008 Nobel Prize in Physics «for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature.»[24]

Quantum physics

Leo Esaki was awarded the 1973 Nobel Prize in Physics[25] for the discovery of electron tunneling (quantum tunnelling) in the 1950s.[26] The tunnel diode (Esaki diode) was invented in August 1957 by Leo Esaki, Yuriko Kurose and Takashi Suzuki when they were working at Tokyo Tsushin Kogyo, now Sony.[27][28][29][26]

Shin’ichirō Tomonaga was awarded the 1965 Nobel Prize in Physics for his «fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles».[30]

Astrophysics

Masatoshi Koshiba was awarded the 2002 Nobel Prize in Physics «for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos»[31] in the 1980s. He conducted pioneering work on solar neutrino detection, and Koshiba’s work also resulted in the first real-time observation of neutrinos from the SN 1987A supernova. These efforts marked the beginning of neutrino astronomy.[32]

Psychology[edit]

The Rashomon effect is where the same event is given contradictory interpretations by different individuals involved. The concept originates from Akira Kurosawa’s 1950 film Rashomon, where a murder is described in four mutually contradictory ways by its four witnesses.[33]

Technology in the Empire of Japan (1868–1945)[edit]

For the first twenty years in the Meiji era, patents and inventions failed to attract much public attention. From the time of the Russo-Japanese War, largely through the action of the body known as the Imperial Invention Association, invention has been encouraged by the Government. With the outbreak of the First World War, imported manufactured goods were cut off, as was the inflow of foreign technology, and, as a consequence, a number of new industries, especially in the heavy and chemical sectors, were set up. Existing firms also took advantage of the opportunity for technical development and thepenetration of new markets. Several such companies were able to overcome the difficulties posed by economic depression and severe international competition. In 1935, at a time Japan experienced state of the art modernization entitled Shōwa Modan, the country ranked only behind the United States and Germany in the number of patents granted.[34][35]

Agriculture[edit]

Vertical rice polishing machine

The rice polishing machines used today are based on the vertical power-driven the milling machine, which was invented by Riichi Satake (the founder of Satake Corporation 株式会社サタケ) in 1930. The condition of the rice after milling, the extent of the milling, and damage to the rice grains during the process affects every link in the production chain. Rice could now be polished more efficiently. The abrasive action of the vertical polishing machine reduced the number of broken grains and made polishing more even, making it possible to produce highly polished rice. Unlike the previous horizontal polishing machines, which are used for table rice, the vertical design used gravity to drop the rice through the center chamber, which was outfitted with a center grindstone coated with carborundum. Horizontal polishing machines have the rice grains rub each other, but the vertical Satake type polished the grain with the abrasive center roller to achieve a 40 percent polishing ration, removing 50 percent of the rice grain, revolutionizing the rice milling system and became the standard, resulting in more uniform, finely polished grains that didn’t chip or crack.[36][37]

Batteries[edit]

Dry cell

The world’s first dry-battery was invented during the Meiji Era. The inventor was Yai Sakizou [ja]. Unfortunately, the company Yai founded no longer exists.[38] An award was granted for a dry cell battery by Yai at the 1903 fifth National Industrial Exhibition ( 第5回内国勧業博覧会 ) in Osaka, Japan. It seems that his award was given in recognition of the fact that his battery was already being exported to foreign countries.[39]

Reactive lead oxides production method

In 1920, Genzo Shimadzu invents «reactive lead oxides production method». Genzo’s invention of the reactive lead powder manufacturing method in 1920 revolutionized the quality and cost of lead powder used in storage batteries. The manufactured lead powder was also used in anti-rust paints, which was even used on the Tokyo Skytree tower completed in 2012. For that invention, Genzo Jr. was selected as one of Japan’s ten greatest inventors. He directed the company’s efforts toward the development, independently, of a lead-powder production method, which was subsequently named the ‘Production Method for Positive Response Lead Powder.’ This was a simple and inexpensive method of industrial production, whereby a lump of lead was placed in a revolving iron drum while air was blown in. The ensuing oxidation of the lump of lead, and its breakdown into lead particles by the friction of the revolving drum, produced the positively charged lead powder. In addition to patenting various processes in Japan, Shimadzu registered patents in the major foreign countries. There were enquiries also concerning the implementation of patents for the Shimadzu production method in the US, Britain, Italy, Belgium, Sweden,Canada Australia and France, attesting to the strong international interest in this technology. At this point, however, Shimadzu became entangled in a patent dispute in the USA. In June 1932, the US Supreme Court pronounced its final verdict and established the patent rights for the Shimadzu technology. Following this victory, implementation of patent rights were finalized in the US, Britain, and France; that is, contracts were concluded successively in these countries. A contract for the acquisition by Ost Lurgi of the Shimadzu technology option was signed in Frankfurt am Main on 1 June 1926. Fritz Haber was also present at this meeting. The company, Ost Lurgi located in Berlin , was established in March 1926 as a joint venture of Mitsubishi, Metallgesellschaft and Degussa AG [de]. The initiator of the establishing Ost Lurgi was Fritz Haber, inventor of the Haber Bosch process, who visited Japan in 1924, he thought highly of the standard of Japanese technology and originated a number of proposals for technico-industrial cooperation between Germany and Japan. One of his idealistic proposals gave rise to the establishment contract of Ost Lurgi. The purpose of Ost Lurgi was to transfer Japanese technology to Germany, but negotiations were drawn out, since the parties could not agree on conditions.[40][41][42][35]

Telecommunications[edit]

Cathode ray tube (CRT)

In 1924, Kenjiro Takayanagi began a research program on electronic television. In 1925, he demonstrated a cathode ray tube (CRT) television with thermal electron emission.[43] In 1926, he demonstrated a CRT television with 40-line resolution,[44] the first working example of a fully electronic television receiver.[43] In 1927, he increased the television resolution to 100 lines, which was unrivaled until 1931.[45] In 1928, he was the first to transmit human faces in half-tones on television, influencing the later work of Vladimir K. Zworykin.[46]

TYK Wireless Telephone

In the era when there was only a Morse code wireless telegraph, the world’s first practical «wireless telephone» to send voices wirelessly was invented in 1912, and successfully completed the first telephone call test in Japan. This device was called the «TYK-type wireless telephone» and was the first wireless telephone to be put into practical use in the world, and in 1913 it was installed in Toba and Kamishima, etc. (A remote island about 14 km from Toba) in Mie Prefecture. After a successful call experiment, a public communication service using wireless telephones started in 1916, with more than 15,000 practical calls. Later, the TYK wireless telephone won a foreign patent and contributed to the introduction of Japanese technology overseas.[47] The commendation system of the Imperial Invention Association took effect through various expositions, exhibitions, prize contests and patent conventions. The first recipients were Uichi Torigata, Eitaro Yokoyama, and Sejiro Kitamura for the TYK wireless telephone.[48] on 16 December 1914, the world’s first public telephone service via a voice based wireless communications system got underway.[49]

Meteor burst communications

The first observation of interaction between meteors and radio propagation was reported by Hantaro Nagaoka in 1929.[50]

Yagi antenna

The Yagi-Uda antenna was invented in 1926 by Shintaro Uda of Tohoku Imperial University, Sendai, Japan, with the collaboration of Hidetsugu Yagi, also of Tohoku Imperial University. Yagi published the first English-language reference on the antenna in a 1928 survey article on short wave research in Japan and it came to be associated with his name. However, Yagi always acknowledged Uda’s principal contribution to the design, and the proper name for the antenna is, as above, the Yagi-Uda antenna (or array).[51]

NE-style phototelegraphy

Phototelegraphic equipment invented by Yasujiro Niwa that became the foundation of mechanical televisions and FAX machines in Japan. In November 1928, when Emperor Hirohito’s Imperial Accession Ceremony was held, newspaper companies that had mulled over ways to deliver papers with photos (The first photo-telegraph to be sent using a leased line) of the ceremony throughout the nation as quickly as possible employed this phototelegraphic equipment with great success. In general use, the NEC-style photo-telegraph was used to send information such as pictures and handwriting.[52]

Non-loaded Cable

The vital technology in Japan’s effort to build a strategic communications link between the home islands and Manchukuo. The importance of this technological invention was not limited to Manchuria, it was the technological equivalent in Japan’s new empire-building endeavor to the gutta-percha submarine cable in the creation of the British empire. In the meantime, NLC would be heralded as a quintessential «Japanese-style technology» and a milestone in modern Japan’s quest for technological autonomy. Even decades later, many in Japan were still convinced that «consistently in every step from invention to application, it was literally a domestically produced technology, worthy of international pride» and the development of NLC was «clearly the starting point of the leap forward of our telecommunications technology to the world’s top level». In 1936, the Japanese government adopted non-loaded cable for the new Japan–Manchukuo cable network as well as for the long-distance communications networks in Japan, thus establishing the supremacy of the new technology in Japan. In the same year, Shigeyoshi Matsumae (松前重義 1901–1991) was awarded the Asano Prize by Japan’s Association of Electrical Engineering for his ground-breaking contribution to the development of telecommunications technology. Named after one of Japan’s first electrical engineers, who oversaw the laying of the submarine cable to Taiwan, the prize of 1,000 yen further consolidated the reputation of NLC as well as that of its chief inventor. Later that year, Matsumae received his doctoral degree from Tōhoku Imperial University. the NLC technology was «the greatest invention in Japan’s telecommunications industry». Now recognized as Japan’s unique contribution to the field of telephone transmission.[53]

Electronics[edit]

Digital circuits

From 1934 to 1936, NEC engineer Akira Nakashima introduced switching circuit theory in a series of papers showing that two-valued Boolean algebra, which he discovered independently, can describe the operation of switching circuits. Nakashima’s switching circuit theory used digital electronics for Boolean algebraic operations.[54][55][16][17] Nakashima’s work was later cited and elaborated on in Claude Shannon’s seminal 1938 paper «A Symbolic Analysis of Relay and Switching Circuits».[16] Nakashima laid the foundations for digital system design with his switching circuit theory, using a form of Boolean algebra as a way to analyze and design circuits by algebraic means in terms of logic gates. His switching circuit theory provided the mathematical foundations and tools for digital system design in almost all areas of modern technology, and was the basis for digital electronics and computer theory.[17][55]

Nakashima’s work on switching circuit theory was further advanced by Claude Shannon in the United States during the late 1930s to 1940s,[17][55] and by Goto Mochinori in Japan during the 1940s.[56][57]

Screen grid valve

The first true screen-grid valve, with a screen grid designed for this purpose, was patented by Hiroshi Ando in 1919.[58]

Instruments[edit]

Electronic organ

Yamaha engineer Mr. Yamashita invented the Yamaha Magna Organ in 1935. It was an electrostatic reed organ, a multi-timbral keyboard instrument based on electrically blown free reeds with pickups.[59][60]

Lighting[edit]

Double-coil bulb

In 1921, Junichi Miura created the first double-coil bulb using a coiled coil tungsten filament while working for Hakunetsusha (a predecessor of Toshiba). At the time, machinery to mass-produce coiled coil filaments did not exist, however Hakunetsusha developed a method to mass-produce coiled coil filaments by 1936.[61]

Metallurgy/Materials[edit]

KS steel

Magnetic resistant steel that is three times more resistant than tungsten steel, invented by Kotaro Honda.[62] Honda’s discovery formed an important basis for Japan’s world-leading position in this field. Always been interested in magnetism, and after returning from studying at Göttingen University in Germany, he became a professor of Tohoku University in 1911. It was at Tohoku University that he invented cobalt steel. Later, he recalled the way he created this world-class material:

"The structure of the alloy (cobalt steel) was basically created in my brain. It was not created merely by chance or by accident. Japanese researchers would do well to learn from my example."

The cobalt steel was named ‘KS steel’ in Japan, since these were the initials of Sumitomo Kichizaemon, the family head of the Sumitomo zaibatsu, who had donated generous funds for this research. In 1918, Sumitomo Steel Casting succeeded in producing KS steel commercially. This steel, although very expensive, was extremely advanced, and was widely exported to Europe and the United States. In the same year, the Institute of Iron and Steel Research (later known as the Institute of Metal Research), the first public research institute for metals, was founded at Tohoku University, and it became the centre for metal research in Japan.[63]

MKM steel

MKM steel, an alloy containing nickel and aluminum, was developed in 1931 by the Japanese metallurgist Tokushichi Mishima.[64][65]

BaTiO3

The BaTiO3 (barium titanate) was discovered by T. Ogawa in 1943.[66]

Hematite Reduction Process

The Anshan Iron Works of the South Manchurian Railway company, having an abundant supply of precisely this sort of low-ferrous, non-magnetic, and high-silica iron ore deposits, was looking for a technical breakthrough to exploit these deposits. Umene Tsunesaburo (later the Chief Engineer and Director), a young engineer of the Anshan Works, graduated from the Department of Metallurgy at Kyoto University in 1911 and went to the Yawata Works. In 1916, when the Anshan Works was established as a large integrated mill, Umene made his way into Manchuria. The operation of the first blast furnace (67 000 ton per year) began in 1919. When the post-First World War depression hit the works, however, South Manchuria Railroad Company (SMRC) decided to postpone the opening of Anshan’s second blast furnace, and proposed construction of steel mills instead. In order to survive in the competitive and unstable iron market previously described, the Anshan Works hoped to reduce production costs by exploiting the abundant low ferrous iron ore deposits around the works. Umene was appointed as a researcher for this special project. In addition, in 1921 the works invited six American scholars and engineers, led by Dr W. R. Appleby, the Head of the Department of Metallurgy at Minnesota University, to research the feasibility of such a project in Manchuria. The team concluded that exploitation of the low quality deposits would not be commercial. Umene, however, did not give up on the calcinated magnetising method, which could achieve reduction and magnetising at the same time. He started his own research, using a theoretical scientific method. According to the chemical reaction formula, it was known that a non-magnetic iron ore chemically reacts and becomes magnetic if hermetically sealed and heated to over 1300 °C. This amount of energy consumption was not feasible, but Umene found that by putting a reducing agent in the ore, he could get the same chemical result at temperatures under 500 to 700 °C. He had only to decide the temperature and the amount of the reducing agent. Through careful experiments, he finally perfected the calcinating magnetisation method, and in June 1922, he took out a patent on the process. Because of this innovation, 90 per cent of even non-magnetic iron ore could be separated. Even more important, this innovation caused Japanese blast furnace engineers to recognise the importance of the preparation of iron ore. Kawasaki Steel’s Chiba Works, established in 1950 as the first large integrated greenfield works after the Second World War, and a model of efficient works, was the most important example. Asawa Saburo, who had been instructed by Umene at the Anshan Works, became Factory Manager of Kawasaki’s Chiba Works and refined the preparatory techniques. About this technological continuity and development, he wrote:

"We thoroughly developed the preparatory process of raw materials at the Chiba Works after the Second World War. In order to process the powder ore, we introduced the pelletizing method, which contributes to high performance ironmaking here. There can be no doubt that I owe the installment of this series of new equipment largely to Dr Umene .... Great technological achievement is never confined within itself, nor does it become just a thing of the past. I learned here that such great innovations (as Umene's) will be continuously succeeded by various applications."[67]

黒田式コークス炉

This furnace recovered by-products through a regenerative burning  apparatus, invented by Kuroda Taizo ( 黒田泰造 1883-1961) in 1918, engineer at the Yahata Works, it was a revolutionary energy-saving oven based on an energy-recycling system. The oven also improved by-product processing and increased coke processing yields. By 1933, the energy efficiency of the eighth coke oven at the Yahata Works was almost equal to that of the most advanced coke oven in Germany. The improvement in the quality of coke was directly reflected in the energy efficiency of iron and steelmaking. In addition, energy recycling techniques such as reuse of the gas generated in the coke oven and blast furnaces were exploited by the system. These efforts helped reduce the energy consumption of the works. The coal consumption per ton of steel production sharply dropped to 1.58 kg in 1933 from 3.7 kg in 1924. Eventually, Kuroda’s idea of energy saving and recycling became fundamental for Japanese steel engineers. In 1962, this technological heritage would produce one of the most important innovations, the Basic Oxygen Furnace Waste Gas Cooling and Clearing System, invented at Yawata Steel (a successor of the Yahata Works).[63][68]

Military[edit]

Aircraft Carrier

Hōshō was the world’s first purpose-built aircraft carrier to be completed. She was commissioned in 1922 for the Imperial Japanese Navy (IJN). Hōshō and her aircraft group participated in the January 28 Incident in 1932 and in the opening stages of the Second Sino-Japanese War in late 1937.[69]

Landing craft carrier

Shinshū Maru was the world’s first landing craft carrier ship to be designed as such, to carry and launch landing craft making it a pioneer of modern-day amphibious assault ships. These concepts pioneered by Shinshū Maru persist to the current day, in the U.S. Navy’s landing helicopter assault and landing helicopter dock amphibious assault ships.[70][71]

Dock landing ship

The predecessor of all modern dock landing ships is Shinshū Maru of the Imperial Japanese Army, which could launch her infantry landing craft using an internal rail system and a stern ramp. She entered service in 1935 and saw combat in China and during the initial phase of Japanese offenses during 1942.[72]

Diesel-powered tank

Japan was in the forefront of tank technology in the early 1930s when the land warfare found itself with state funding, introducing a number of innovations such as diesel tank engines. The world’s first diesel-powered tank, this distinction goes to Japanese Type 89B I-Go Otsu, produced with a diesel engine from 1934 onwards.[73]

Naval telegraphy

The Battle of Tsushima was the first naval battle in which wireless telegraphy (radio) played a critically important role.[74] Wireless telegraphy played an important role from the start. At 04:55, Captain Narukawa of the Shinano Maru sent a message to Admiral Tōgō in Masampo that the «Enemy is in square 203». By 05:00, intercepted radio signals informed the Russians that they had been discovered and that Japanese scouting cruisers were shadowing them. Admiral Tōgō received his message at 05:05, and immediately began to prepare his battle fleet for a sortie.[75]

Lieutenant Akiyama Saneyuki had been sent to the United States as a naval attaché in 1897. He witnessed firsthand the capabilities of radio telegraphy and sent a memo to the Navy Ministry urging that they push ahead as rapidly as possible to acquire the new technology.[76] The ministry became heavily interested in the technology; however it found the cost of the Marconi wireless system, which was then operating with the Royal Navy, to be exceedingly expensive. The Japanese therefore decided to create their own radio sets by setting up a radio research committee under Professor Shunkichi Kimura, which eventually produced an acceptable system. In 1901, having attained radio transmissions of up to 70 miles (110 km), the navy formally adopted radio telegraphy. Two years later, a laboratory and factory were set up at Yokosuka to produce the Type 36 (1903) radios, and these were quickly installed on every major warship in the Combined Fleet by the time the war started.[77]

Alexander Stepanovich Popov of the Naval Warfare Institute had built and demonstrated a wireless telegraphy set in 1900, and equipment from the firm Telefunken in Germany was adopted by the Imperial Russian Navy. Although both sides had early wireless telegraphy, the Russians were using German sets and had difficulties in their use and maintenance, while the Japanese had the advantage of using their own equipment.[78]

Torpedo boat destroyer

Kotaka (Falcon), built in 1885.[79] Designed to Japanese specifications and ordered from the Isle of Dogs, London Yarrow shipyard in 1885, she was transported in parts to Japan, where she was assembled and launched in 1887. The 165-foot (50 m) long vessel was armed with four 1-pounder (37 mm) quick-firing guns and six torpedo tubes, reached 19 knots (35 km/h), and at 203 tons, was the largest torpedo boat built to date. In her trials in 1889, Kotaka demonstrated that she could exceed the role of coastal defense, and was capable of accompanying larger warships on the high seas. The Yarrow shipyards, builder of the parts for Kotaka, «considered Japan to have effectively invented the destroyer».[80]

Workable oxygen torpedo

The Japanese began experimenting with oxygen-driven torpedoes about 1924, but gave up after numerous explosions and failures. Then, in 1927, an eight-man Japanese naval delegation went to the Whitehead Torpedo Works at Weymouth to study and buy a regular version of the Whitehead torpedo. While there, they believed that they had stumbled onto evidence that the Royal Navy was secretly experimenting with oxygen torpedoes. Although they were mistaken, the Japanese delegation was so impressed with the information they had gathered that they sent an extensive report back to Tokyo in 1928. By the end of that year, intensive research and experimentation had begun at the Kure Naval Arsenal on a workable oxygen torpedo. Starting in 1 932, this effort was led by Captain Kishimoto Kaneharu. Step by step, Captain Kishimoto and his colleagues began to attack the problems inherent in the design of such a weapon. Explosions were minimized by using natural air at the start of the engine’s ignition, and oxygen was let in gradually to replace it. The men also took certain precautions to avoid contact between the oxygen and lubricants used in the torpedo’s machinery. Particular care was given to the fuel lines. They were cleaned with a potassium compound to eliminate oil and grease and were redesigned to round out all sharp angles, and their linings were finely ground to eliminate all tiny pits where any residual oxygen, oil, or grease could accumulate. The first test firings of the system, incorporating an engine of standard Whitehead design but using oxygen in place of air, were successfully carried out in 1933. That year, the navy formally designated the weapon as the type 93 torpedo, which has become known in the West as the «long-lance» torpedo, generally recognized as the best torpedo of World War II.[81]

Ijuin fuse

This remarkable Japanese invention by Ijuin Gorō caused the shells to explode on impact rather than, like the Russian armour, simply penetrating the steel plating of enemy vessels and exploding below deck. It was not just the terrible effect of the explosive charge that caused panic. When the shells hit they immediately threw out a wall of fire over everything in range. The Japanese shelling was terrifying and to the watching eyes of the Russians what was hurtling towards them seemed to be carton after carton of liquid fire.[82]

Shimose powder

A picric acid explosive that the Japanese had developed a new type of shell for. The shell was thin-skinned, allowing more space for the Shimose powder explosive 10 percent of the total weight of the shell instead of the normal 2-3 percent. These shells bore the name of furoshiki.[82] Shimose Powder, with its compound treated as top secret, was adopted by the Imperial Japanese Navy from 1893, not only for naval artillery but also for naval mines, depth charges and torpedo warheads. It played an important role in the Japanese victory in the Russo-Japanese War of 1904 to 1905.[83]

Forerunner of the modern flamethrower

Richard Fiedler refined his flamethrower designs, aided by engineer and soldier Bernhard Reddemann. The Japanese are credited with the first use of compressed gas to project an inflammable liquid. As early as the Russo-Japanese War, the Japanese army discovered that infantrymen were prone to suffer huge losses in front of well-guarded fortresses. They used animal organ oil and the kerosene was mixed and ignited, and the harmful gas produced was poured into the Russian defense building to force it to abandon the defense.  Reddemann’s interest in flame weapons had originally been sparked by reports from the battlefields of the 1904-5 Russo-Japanese War. During the siege of Port Arthur, Japanese combat engineers had used hand pumps to spray kerosene into Russian trenches. Once the Russians were covered with the flammable liquid, the Japanese would throw bundles of burning rags at them.[84]

Textile[edit]

Automatic power loom with a non-stop shuttle-change motion

Sakichi Toyoda invented numerous weaving devices. His most famous invention was the automatic power loom in which he implemented the principle of Jidoka (autonomation or autonomous automation). It was the 1924 Toyoda Automatic Loom, Type G, a completely automatic high-speed loom featuring the ability to change shuttles without stopping and dozens of other innovations. At the time it was the world’s most advanced loom, delivering a dramatic improvement in quality and a twenty-fold increase in productivity.This loom automatically stopped when it detected a problem such as thread breakage. This loom delivered the world’s top performance in terms of productivity and textile quality. An engineer from Platt Brothers & Co., Ltd. of England, one of the world’s leading manufacturers of textile machinery at the time, admiringly referred to this loom as «the magic loom».[85]

Garabo spinning

Garabo [ja] (ガラ紡 ) indigenous technology as a transitional innovation between pre-modern cotton-spinning and industrial British-style spinning. The technical breakthrough for the design was attributed to the engineering genius of a single inventor and buddhist monk, Tokimune Gaun [ja] (臥雲辰致 1842-1900). The subsequent innovations of the Garabo were concentrated on the power supply system or the increase (and arrangement) of the spindles. Despite the latter increasing the complexity in frame structure, the core spinning mechanism was not altered. The Garabo technology was conceived as an affordable, accessible, and familiar technology to enhance productivity of peasant house-hold spinning, a common rural by-employment. Exhibited at the first National Industrial Exhibition ( 第1回内国勧業博覧会) in 1877, the machine was highly regarded by Gottfried Wagener [de] (1831-1892) as the best invention displayed at the event. However, since the machine featured a simple mechanism, many imitations were manufactured. Despite its technically-groundbreaking mechanism for resource and labour saving, in the absence of managerial transformation, it was unable to compete with the emergent British-style sector and its modern entrepreneurship.[86][87]

Vinylon

The second man-made fiber to be invented, after nylon. It was first developed by Ichiro Sakurada, H. Kawakami, and Korean scientist Ri Sung-gi at the Takatsuki chemical research center in 1939 in Japan.[88][89]

Technology in postwar Japan (1945–Present)[edit]

Since the mid-20th century, Japan has played an important role in diverse fields of Research and Development.[90] In terms of the number of Triadic patents filed annually in the 21st century, Japan has the highest number in the world, ahead of the United States. Although several different patent families exist, the triadic patent family is widely recognized as the gold standard and highest quality level. Triadic patents are filed jointly in the largest global technology markets: the Japan Patent Office (JPO), the United States Patent and Trademark Office (USPTO), and the European Patent Office (EPO).[91]

Audio[edit]

Digital audio

Commercial digital recording was pioneered by NHK and Nippon Columbia, also known as Denon, in the 1960s. The first commercial digital recordings were released in 1971.[92]

In 1967, the first PCM (pulse-code modulation) recorder was developed by NHK’s research facilities in Japan. In 1969, NHK expanded PCM’s capabilities to 2-channel stereo and 32 kHz 13-bit resolution. In January 1971, using NHK’S PCM recording system, engineers at Denon recorded the first commercial digital recordings, including Uzu: The World of Stomu Yamash’ta 2 by Stomu Yamashta.[92]

Compact Disc Digital Audio (CD-DA), also called Red Book, was an audio format developed by Sony and Philips in 1980,[93] and commercially introduced with their compact disc (CD) format in 1982.

Speech synthesis

In 1968, the first text-to-speech synthesis system was developed by Noriko Umeda’s team at Japan’s Electrotechnical Laboratory.[94]

Direct-drive turntables

The direct-drive turntable was invented by Shuichi Obata, an engineer at Matsushita (now Panasonic),[95] based in Osaka, Japan.[96] It eliminated the belts of older belt-drive turntables, and instead employed a motor to directly drive a platter on which a vinyl record rests.[97] In 1969, Matsushita released it as the SP-10,[97] the first direct-drive turntable on the market,[98] and the first in their Technics series of turntables.[97] This gave rise to turntablism, with the most influential turntable being the Technics SL-1200, released in 1972 and remaining the most widely used turntable in DJ culture for the next several decades.[97][99]

DJ turntablism has origins in the invention of direct-drive turntables. Early belt-drive turntables were unsuitable for turntablism, since they had a slow start-up time, and they were prone to wear-and-tear and breakage,[96] as the belt would break from backspinning or scratching.[100] In 1972, Technics started making their SL-1200 turntable, which became the most popular turntable for DJs due to its high torque direct-drive design.[99] Hip hop DJs began using the Technics SL-1200s as musical instruments to manipulate records with turntablism techniques such as scratching and beat juggling rather than merely mixing records.[99] In 1975,[101] hip-hop DJ Grand Wizard Theodore invented the scratching technique by accident. He developed the technique while experimenting with a Technics SL-1200 turntable, finding that its direct-drive motor would continue to spin at the correct RPM even if the DJ wiggled the record back and forth on the platter.[99] Although Technics stopped producing the SL-1200 in 2010, they remain the most popular DJ turntable due to their high build quality and durability. The SL-1200 evolved into the SL-1200 MK2 in 1979—which, as of the early-2010s, remains an industry standard for DJing.

Walkman

The Walkman prototype was built in 1978 by audio-division engineer Nobutoshi Kihara for Sony co-founder Masaru Ibuka. Ibuka wanted to be able to listen to operas during his frequent trans-Pacific plane trips, and presented the idea to Kihara.[102] The Walkman was commercially released in 1979.

Transportation[edit]

Bullet train

The world’s first high volume capable (initially 12 car maximum) «high-speed train» was Japan’s Tōkaidō Shinkansen, which officially opened in October 1964, with construction commencing in April 1959.[103] The 0 Series Shinkansen, built by Kawasaki Heavy Industries, achieved maximum passenger service speeds of 210 km/h (130 mph) on the Tokyo–Nagoya–Kyoto–Osaka route, with earlier test runs hitting top speeds in 1963 at 256 km/h.[103]

Kei car

Kei cars are a category of small automobiles invented in Japan, including passenger cars, vans, and pickup trucks. They are designed to exploit local tax and insurance relaxations, and in more rural areas are exempted from the requirement to certify that adequate parking is available for the vehicle.[104][105]

Batteries[edit]

Lithium-ion battery

Akira Yoshino invented the modern li-ion battery in 1985. In 1991, Sony and Asahi Kasei released the first commercial lithium-ion battery using Yoshino’s design.[106]

Calculators[edit]

Electric calculators

The world’s first all-electric compact calculator was the Casio Computer Company’s Model 14-A, released in 1957.[107][108][109] The first electronic desktop calculator with on-board memory was the Casio 001, released in 1965.[108] In 1967, Casio released the AL-1000, the world’s first programmable desktop calculator.[108][110]

Large-scale integration (LSI)

The Sharp QT-8D, a desktop calculator released in 1969, was the first calculator to have its logic circuitry entirely implemented with LSI (large-scale integration) integrated circuits (ICs) based on MOS (metal-oxide-semiconductor) technology.[111][112][113] Upon its introduction,[113] it was one of the smallest electronic calculators ever produced commercially.

Portable calculators

The first portable calculators appeared in Japan in 1970, and were soon marketed around the world. These included the Sanyo ICC-0081 «Mini Calculator», the Canon Pocketronic, and the Sharp QT-8B «micro Compet». In January 1971, the Sharp EL-8 was close to being a pocket calculator, weighing about one pound, with a vacuum fluorescent display (VFD) and rechargeable NiCad batteries. The EL-8 was the first battery-powered handheld calculator.[114]

The concept of a single-chip calculator was conceived by Sharp engineer Tadashi Sasaki in 1968.[115] The first truly pocket-sized electronic calculator was the Busicom LE-120A «HANDY», the first single-chip calculator to be built, released in February 1971.[116] The Busicom 141-PF desktop calculator, released in March 1971, was the first computing machine to use a microprocessor, the 4-bit Intel 4004 (co-designed by Busicom’s Masatoshi Shima).[117][118]

LCD calculators

In 1971, Tadashi Sasaki began research on the use of LCD displays for calculators at Sharp Corporation.[115] In 1973, Sharp commercially introduced the first LCD calculators.[119][115]

Cameras[edit]

Analog cameras

The Asahiflex II, released by Asahi (Pentax) in 1954, was the world’s first single-lens reflex camera (SLR camera) with an instant return mirror.[120]

In 1967, Sony unveiled the Portapak, the first self-contained video tape analog recording system that was portable.[121] On 25 August 1981, Sony unveiled a prototype of the first still video camera, the Sony Mavica. This camera was an analog electronic camera that featured interchangeable lenses and an SLR viewfinder.

Digital SLR (DSLR)

At photokina in 1986, Nikon revealed a prototype digital still SLR camera, the Nikon SVC, the first digital SLR. The prototype body shared many features with the N8008.[122][123] In 1988, Nikon released the first commercial DSLR camera, the QV-1000C.[123]

The first full-frame DSLR cameras were developed in Japan from around 2000 to 2002: the MZ-D by Pentax,[124] the N Digital by Contax’s Japanese R6D team,[125] and the EOS-1Ds by Canon.[126]

Camcorders

In 1982, JVC and Sony announced the first camcorders, as CAMera/reCORDER combinations.[127] That year, Sony released the first camcorder, the Betacam system, for professional use.[128] In 1983, Sony released the first consumer camcorder, the Betamovie BMC-100P,[128] and JVC released the first VHS-C camcorder.[129]

Camera phone

In 2000, Sharp Corporation introduced the world’s first camera phone, the J-SH04 J-Phone, in Japan.[130]

Civil construction[edit]

Roller-compacted concrete dam

Japan is the country where the world’s first roller-compacted concrete dam was constructed in 1980. Japanese engineers developed an approach defined as the «Roller-Compacted Dam method (RCD)” designed to achieve the same quality and appearance of conventional mass concrete, which resulted in the placement of RCC for the main body of Shimajigawa Dam in Japan, from 1978 to 1980. Since then, about 40 roller-compacted concrete dams have been constructed in Japan. Japanese roller-compacted concrete dams are called RCD dams and are distinguished from the other roller-compacted concrete dams (RCC) because there are some differences in their design and construction philosophies. The Japanese design is widely influential.[131]

NSP kiln

The successful technological development of the new suspension preheater ( NSP ) kiln prompted Japanese cement companies to build up their technological development know-how. Companies successively began to develop new cement-manufacturing-related machinery. Japan came to lead the world in cement manufacturing technology. NSP technology has also been actively licensed overseas. The NSP kiln is a Japanese technology still used throughout the world today. It was developed by several Japanese cement companies, either independently or in collaboration with plant manufacturers. Several different
successful systems were developed, but all of them
included a separate furnace (calciner) with the preheater, thereby improving the decarbonization rate of the raw material and increasing the output of the rotary kiln.[132]

Communications[edit]

Optical communication

While working at Tohoku University, Jun-ichi Nishizawa proposed fiber-optic communication, the use of optical fibers for optical communication, in 1963.[133] Nishizawa invented other technologies that contributed to the development of optical fiber communications, such as the graded-index optical fiber as a channel for transmitting light from semiconductor lasers.[134][135] He patented the graded-index optical fiber in 1964.[90] The solid-state optical fiber was invented by Nishizawa in 1964.[136]

Hardware elements providing the basis of internet technology, the three essential elements of optical communication, were invented by Jun-ichi Nishizawa: the semiconductor laser (1957) being the light source, the graded-index optical fiber (1964) as the transmission line, and the PIN photodiode (1950) as the optical receiver.[90] Izuo Hayashi’s invention of the continuous wave semiconductor laser in 1970 led directly to the light sources in fiber-optic communication, commercialized by Japanese entrepreneurs,[137] and opened up the field of optical communication, playing an important role in the communication networks of the future.[138] Their work laid the foundations for the Digital Revolution and the Information Age.[90]

Mobile communication

The first emoji was created in 1998 or 1999 in Japan by Shigetaka Kurita.[139]

Computing[edit]

Digital circuits

The parametron was a logic circuit element invented by Eiichi Goto in 1954.[140] It was a digital computer element.[17] Parametrons were used in Japanese computers from 1954 to the early 1960s, such as the University of Tokyo’s PC-1 built in 1958, due to being reliable and inexpensive, but were ultimately surpassed by transistors due to differences in speed.[141]

Digital computers

The ETL Mark I, Japan’s first digital automatic computer, began development in 1951 and was completed in 1952.[142] It was developed by the Electrotechnical Laboratory using relays, based on the switching circuit theory formulated by Akira Nakashima in the 1930s and advanced by Goto Mochinori in the 1940s.[56][57]

Transistor computers

The ETL Mark III began development in 1954,[143] and was completed in 1956, created by Japan’s Electrotechnical Laboratory.[144] It was the first stored-program transistor computer.[144][145][57] It used ultrasonic delay-line memory.[144]

The ETL Mark III’s successor, the ETL Mark IV, began development in 1956 and was completed in 1957. It was a stored-program transistor computer with high-speed magnetic drum memory.[146][57] A modified version of the ETL Mark IV, the ETL Mark IV A, was introduced in 1958, as a fully transistorised computer with magnetic-core memory and an index register.[57][147]

The MARS-1 system was created by Mamoru Hosaka, Yutaka Ohno and others at the Railway Technical Research Institute in the 1950s, and was produced by Hitachi in 1958.[148] It was the world’s first computer reservation system for trains.[57] The MARS-1 was capable of reserving seat positions, and was controlled by a transistor computer with a central processing unit consisting of a thousand transistors.[148] It also had a 400,000-bit magnetic drum memory unit, and many registers, to indicate whether seats in a train were vacant or reserved, for communications with terminals, printing reservation notices, and CRT displays.[148]

The use of microprogramming in electronic transistor computers dates back to 1961, with the KT-Pilot, an early microprogram-controlled electronic computer developed by Kyoto University and Toshiba in Japan.[57][149]

Office computers

Compact office computers originated from Japan in the early 1960s. While American offices at the time ran large minicomputers loaded with business applications, Japanese manufacturers invented highly compact office computers, with hardware, operating systems, peripheral devices and application development languages specifically developed for business applications, playing a big role in Japan’s booming economy. The first office computers released in 1961: Casio’s TUC Compuwriter, NEC’s NEAC-1201 parametron computer, and Unoke Denshi Kogyo’s USAC-3010.[150] In 1967, NEC introduced the NEAC-1240, the world’s first small IC (integrated circuit) computer.[151]

Computer music

In Japan, experiments in computer music date back to 1962, when Keio University professor Sekine and Toshiba engineer Hayashi experimented with the TOSBAC computer. This resulted in a piece entitled TOSBAC Suite. Later Japanese computer music compositions include a piece by Kenjiro Ezaki presented during Osaka Expo ’70 and «Panoramic Sonore» (1974) by music critic Akimichi Takeda. Ezaki also published an article called «Contemporary Music and Computers» in 1970. Since then, Japanese research in computer music has largely been carried out for commercial purposes in popular music.[152]

Computer graphics

Particularly well known iconic digital computer graphics images include Running Cola is Africa,[153] by Masao Komura and Koji Fujino, created at the Computer Technique Group, Japan, in 1967.[154]

4-bit microprocessors

The concept of a single-chip microprocessor CPU (central processing unit) was conceived in a 1968 meeting in Japan between Sharp engineer Tadashi Sasaki and an unnamed female software engineering researcher from Nara Women’s College. He discussed the concept at a brainstorming meeting that was held in Japan. Sasaki attributes the basic invention to break the chipset of a calculator into four parts with ROM (4001), RAM (4002), shift registers (4003) and CPU (4004) to an unnamed woman, a software engineering researcher from Nara Women’s College, who was present at the meeting. Sasaki then had his first meeting with Noyce in 1968. Sasaki discussed the microprocessor concept with Busicom and Intel in 1968, and presented the woman’s four-division chipset concept to Intel and Busicom. This provided the basis for the single-chip microprocessor design of the Intel 4004.[115] He was also involved in the development of the Busicom 141-PF desktop calculator which led to the 4004’s creation.[118] Sasaki thus played a key role in the creation of the first microprocessor.[115]

The first commercial microprocessor, the 4-bit Intel 4004, began with the «Busicom Project»[155] in 1968 as Masatoshi Shima’s three-chip CPU design for the Busicom 141-PF calculator.[118][155] In April 1968, Shima was tasked with designing a special-purpose LSI chipset, along with his supervisor Tadashi Tanba, for use in the Busicom 141-PF desktop calculator.[118][117] This later became known as the «Busicom Project».[155] His initial design consisted of seven LSI chips, including a three-chip CPU.[155] His design included arithmetic units (adders), multiplier units, registers, read-only memory, and a macro-instruction set to control a decimal computer system.[118] Busicom then wanted a general-purpose LSI chipset, for not only desktop calculators, but also other equipment such as a teller machine, cash register and billing machine. Shima thus began work on a general-purpose LSI chipset in late 1968.[117]

In 1969, Busicom asked Intel, a company founded one year earlier in 1968 for the purpose of making solid state random-access memory (RAM), to finalize and manufacture their calculator engine. Intel, which was more of a memory company back then, had facilities to manufacture the high density silicon gate MOS chip Busicom required.[117] Shima went to Intel in June 1969 to present his design proposal. Due to Intel lacking logic engineers to understand the logic schematics or circuit engineers to convert them, Intel asked Shima to simplify the logic.[117] Intel wanted a single-chip CPU design,[117] influenced by Sharp’s Tadashi Sasaki who presented the concept to Busicom and Intel in 1968.[115] The single-chip microprocessor design was then formulated by Intel’s Marcian Hoff in 1969, simplifying Shima’s initial design down to four chips, including a single-chip microprocessor CPU.[155] Due to Hoff’s formulation lacking key details, Shima came up with his own ideas to find solutions for its implementation. Shima was responsible for adding a 10-bit static shift register to make it useful as a printer’s buffer and keyboard interface, many improvements in the instruction set, making the RAM organization suitable for a calculator, the memory address information transfer, the key program in an area of performance and program capacity, the functional specification, decimal computer idea, software, desktop calculator logic, real-time I/O control, and data exchange instruction between the accumulator and general purpose register. Hoff and Shima eventually realized the 4-bit microprocessor concept together, with the help of Intel’s Stanley Mazor to interpret the ideas of Shima and Hoff.[117] Busicom’s management agreed to the new proposal.[156] The architecture and specifications of the four chips were designed over a period of a few months in 1969, between an Intel team led by Hoff and a Busicom team led by Shima.[155]

After Shima went back to Japan in late 1969 and then returned to Intel in early 1970, he found that no further work had been done on the 4004 since he left, and that Hoff was no longer working on the project. The project leader had become Federico Faggin, who had only joined Intel a week before Shima arrived. After explaining the project to Faggin, Shima worked with him to design the 4004 processor, with Shima responsible for the chip’s logic.[117] The chip’s final design was completed in 1970 by Intel’s Federico Faggin and Busicom’s Masatoshi Shima. The Intel 4004 was commercially released in 1971, first as part of the Busicom 141-PF calculator and then separately by Intel. The 4004 was also used in other Busicom machines, including an automated teller machine (ATM) and cash register.[155][117] The microprocessor became the basis for microcomputers, which led to the microcomputer revolution.

NEC released the μPD707 and μPD708, a two-chip 4-bit microprocessor CPU, in 1971.[157] They were followed by NEC’s first single-chip microprocessor, the μPD700, in April 1972,[158][159] a prototype for the μCOM-4 (μPD751), released in April 1973,[158] combining the μPD707 and μPD708 into a single microprocessor.[157] In 1973, Toshiba developed the TLCS-12,[158][160] the world’s first 12-bit microprocessor.[161] The project began in 1971, when Toshiba began developing a microprocessor for Ford Motor Company’s Electronic Engine Control (EEC) project, which went on to utilize Toshiba’s 12-bit microprocessor.[161]

8-bit to 32-bit microprocessors

Masatoshi Shima joined Intel in 1972.[162] The Intel 8080, released in 1974, was the first general-purpose microprocessor.[163] The 8-bit Intel 8080 was designed by Federico Faggin and Masatoshi Shima.[164] Shima was employed to implement the transistor-level logic of the 8080.[117] In 1975, Shima joined Zilog, where he designed the Zilog Z80 released in 1976 and the Zilog Z8000 released in 1979. After returning to Japan, Shima founded the Intel Japan Design Center in 1980 and VM Technology Corporation in 1986. At VM, he developed the 16-bit microprocessor VM860 and 32-bit microprocessor VM 8600 for the Japanese word processor market. He became a professor at the University of Aizu in 2000.[162]

In 1975, Panafacom (a conglomeration of Fujitsu, Fuji Electric and Matsushita) developed the first commercial 16-bit single-chip microprocessor,[165] the MN1610.[166][167] According to Fujitsu, it was «the world’s first 16-bit microcomputer on a single chip».[165]

In the early 1990s, engineers at Hitachi found ways to compress RISC instruction sets so they fit in even smaller memory systems than CISC instruction sets. They developed a compressed instruction set for their SuperH series of microprocessors, introduced in 1992.[168] The SuperH instruction set was later adapted for the ARM architecture’s Thumb instruction set.[169] Compressed instructions appeared in the ARM architecture, after ARM Holdings licensed SuperH patents as a basis for its Thumb instruction set.[169]

Peripheral chips

While working for Intel in the 1970s, Masatoshi Shima designed a number of Intel peripheral chips. Some of his peripheral chips were used in the IBM PC, including the Intel 8259 interrupt controller, 8255 parallel port chip, 8253 timer chip, 8257 DMA chip, and 8251 serial communication USART chip.[162]

Microcomputers

The first microcomputer was Sord Computer Corporation’s SMP80/08.[170] It was developed in 1972, using the 8-bit Intel 8008 microprocessor, which it was developed in tandem with.[163]

The first personal computers based on the Intel 8080 were the Sord SMP80/x series,[163] released in 1974.[163][170] They were the first microcomputers with an operating system.[171] The SMP80/x series marked a major leap toward the popularization of microcomputers.[163] In 1977, Panafacom released an early 16-bit microcomputer, the Lkit-16, based on the 16-bit Panafacom MN1610 microprocessor they developed in 1975.[166]

Home computers

Sord Computer Corporation’s M200 Smart Home Computer, released in 1977, was one of the first home computers. It was an early desktop computer that combined a Zilog Z80 CPU, keyboard, CRT display, floppy disk drive and MF-DOS operating system into an integrated unit. The Sord M223 Mark VI, introduced in 1979, was an early personal computer to come standard with a built-in hard disk drive.[172]

Yash Terakura’s team at Commodore Japan was responsible for designing the color PET in 1979 and the VIC-20 (VIC-1001) in 1980.[173] In 1981, the Commodore MAX Machine was developed by a team led by Yashi Terakura at Commodore Japan in 1981,[174] and was a predecessor to the popular Commodore 64. Also in 1981, Terakura designed the Commodore 64,[173] along with Shiraz Shivji.[175] In 1982, NEC introduced the PC-9800 series, which went on to sell 18 million units.[176]

3D computer graphics

An early example of 3D computer graphics software for personal computers is 3D Art Graphics, a set of 3D computer graphics effects, written by Kazumasa Mitazawa and released in June 1978 for the Apple II home computer.[177][178]

The first implementation of Real-time 3D ray tracing was the LINKS-1 Computer Graphics System, built in 1982 at Osaka University’s School of Engineering, by professors Ohmura Kouichi, Shirakawa Isao and Kawata Toru with 50 students. It was a massively parallel processing computer system with 514 microprocessors, used for rendering realistic 3D graphics with high-speed ray tracing. According to the Information Processing Society of Japan: «By developing a new software methodology specifically for high-speed image rendering, LINKS-1 was able to rapidly render highly realistic images.» It was «used to create the world’s first 3D planetarium-like video of the entire heavens that was made completely with computer graphics. The video was presented at the Fujitsu pavilion at the 1985 International Exposition in Tsukuba.»[179]

Music Macro Language (MML)

In 1978, Japanese personal computers such as the Sharp MZ and Hitachi Basic Master were capable of digital synthesis, which were sequenced using Music Macro Language (MML).[180] This was used to produce chiptune video game music.[152]

Graphics processing unit (GPU)

The NEC µPD7220, also known as the 7220, was the first true graphics processing unit (GPU),[181] designed as a microprocessor,[182] with VLSI,[183] the first implementation of a graphics processor as a single Large Scale Integration (LSI) integrated circuit chip. This enabled the design of low-cost, high-performance video graphics cards, such as those from Number Nine Visual Technology, and was the basis for clones such as the Intel 82720.[184] The 7220 project was started in 1979, and a paper was published in 1981.[185] It debuted in Japan with NEC’s PC-9800 series of personal computers in 1982, and then released independently. The 7220 had a fillrate of 1.25 megapixels per second and a rasterisation rate of 125 polygons (100-pixel by 100-pixel) per second, faster than central processing units (CPU) at the time.[186] The 7220’s high resolution color graphics led NEC to market it as a «resolution revolution». By 1983, it was used in NEC’s APC computers, and other computers from Digital Equipment Corporation and Wang Laboratories.[187]

The 7220 and its clones led the early GPU market for several years,[184] and was still the best known GPU in 1986.[186] It was eventually surpassed by the more powerful Hitachi HD63484 ACRTC, released in 1984.[188][189]

Laptops

Yukio Yokozawa, an employee for Suwa Seikosha, a branch of Seiko (now Seiko Epson), invented the first laptop (notebook) computer in July 1980, receiving a patent for the invention.[190] Seiko’s notebook computer, known as the HC-20 in Japan, was announced in 1981.[191] In North America, Epson introduced it as the Epson HX-20 in 1981, at the COMDEX computer show in Las Vegas, where it drew significant attention for its portability.[192] It had a mass-market release in July 1982, as the HC-20 in Japan[191] and as the Epson HX-20 in North America.[193] It was the first notebook-sized handheld computer (mobile device),[194][191][193] the size of an A4 notebook and weighing 1.6 kg (3.5 lb).[191] In 1983, the Sharp PC-5000[195] and Ampere WS-1 laptops from Japan featured a modern clamshell design.[196][197]

FM synthesis and MIDI

The Yamaha GS-1, the first commercial FM digital synthesizer, released in 1980, was programmed using a proprietary Yamaha computer, which at the time was only available at Yamaha’s headquarters in Japan (Hamamatsu) and the United States (Buena Park).[198]

It was not until the advent of MIDI in 1983 that general-purpose computers started to play a key role in mainstream music production.[199] In 1982, the NEC PC-88 and PC-98 computers introduced MIDI support.[152]

MSX and Yamaha modules

In 1983, the Yamaha CX5 MSX computer and Yamaha MSX modules introduced FM synthesis[200][201] and MIDI sequencing to the MSX personal computer,[202][201] including MIDI software with capabilities such as synthesizing and sequencing sounds and rhythms.[203] They provided synthesis, composition tools, and a 4-track MIDI sequencer, available on different cartridges.[204]

The Yamaha CX5M is an MSX-based personal computer, specializing in music and sound production. It was originally released as the CX5 in 1983,[200][205] before being upgraded to the CX5M in 1984. The CX5 was a YIS-303 MSX computer with a built-in SKW-01 sound module,[205] while the CX5M was a YIS-503 Diabolik MSX computer with a built-in SFG-01 FM Sound Synthesizer Unit sound module.[206][201][207] The CX5M was marketed as an electronic musical instrument,[206] and was one of the most anticipated electronic music products of 1984.[201]

It expands upon the normal features expected from these systems with a built-in eight-voice FM synthesizer module, manufactured by Yamaha Corporation,[208] along with a MIDI interface.[202][201] It came with graphical music software for digital synthesis and a sequencing,[202][201] capable of synthesizing and sequencing sounds and rhythms,[203] with its internal FM synthesizer or external MIDI devices.[202] It provided synthesis, composition tools, and a four-track MIDI sequencer, available on different cartridges.[204]

The SFG-01 FM Sound Synthesizer Unit, released in 1983,[207][209] uses several chips, including a Yamaha YM2151 FM sound chip, YM3012 stereo DAC, YM2210 MIDI communications chip, YM2148 keyboard scanning chip,[201] and YM2148 MIDI UART.[209] It also has stereo audio outputs, an input for a purpose-built four-octave keyboard, and a pair of MIDI Input/Output ports. It had limited MIDI support on the original CX5M model,[201] with only management of data from a Yamaha DX7 digital synthesizer. The YIS-303, CX5, YIS-503 and CX5M computers could be upgraded with the SFG-01 FM Sound Synthesizer Unit II sound module, released in 1984,[209] featuring an upgraded Yamaha YM2164 sound chip[209] and full MIDI support, which could be used for normal MIDI. The SFG-05 module came integrated with the second CX5M revision, the CX5M II.[206]

Music software were released on MSX cartridges, including YRM-101/YRM11 FM Music Composer, YRM-102/YRM12 FM Voicing Program, YRM-103/YRM13 DX-7 Voicing Program, YRM-104/YRM15 Yamaha FM Music Macro, YRM-105 DX-9 Voicing Program, YRM-301 MIDI Recorder YRM-301, YRM-302 RX Editor, YRM-303 MIDI Macro & Monitor, YRM-304 TX-7 Voicing Program, YRM-305 DX-21 Voicing Program, YRM-501 FM Music Composer II, YRM-502 FM Voicing program, YRM-504 Yamaha FM Music Macro II, and YRM-506 FB-01 Voicing Program.[206][201]

Later, Yamaha released the Yamaha FB-01 MIDI module, which was effectively an SFG-05 in a standalone, portable case. FB-01 is an independent Z80 microprocessor system that sends and receives data from YM2164.[210] The FB-01 was released in 1986.[211]

Sound cards and sound modules

In 1983, Roland Corporation’s CMU-800 sound module introduced music synthesis and sequencing to the PC, Apple II,[212] and Commodore 64.[213]

The spread of MIDI on computers was facilitated by Roland Corporation’s MPU-401, released in 1984. It was the first MIDI-equipped PC sound card, capable of MIDI sound processing[214] and sequencing.[215][216] After Roland sold MPU sound chips to other sound card manufacturers,[214] it established a universal standard MIDI-to-PC interface.[217] The widespread adoption of MIDI led to computer-based MIDI software being developed.[199] In 1987, Roland introduced LA synthesis to the computer music market, with the Roland MT-32 MIDI sound module.[218]

USB

A group of several companies began the development of USB in 1994, including Japanese company NEC.[219]

Displays[edit]

Aperture grille

Aperture grille is one of the two major CRT display technologies. Aperture grille was introduced by Sony with their Trinitron television in 1968.[220] The Trinitron television was invented by Sony’s Susumu Yoshida in 1968.[66]

Shadow mask

The other major CRT display technology.

Handheld television

In 1970, Panasonic released the first handheld television, small enough to fit in a large pocket, the Panasonic IC TV MODEL TR-001. It featured a 1.5-inch display, along with a 1.5-inch speaker.[221]

Liquid crystal display (LCD)

LCD displays incorporating thin film and transistors were demonstrated in 1970 by J. Kishimoto from Canon[222] and Katsumi Yamamura from Suwa Seikosha (Seiko),[223] and further developed by Sharp Corporation in 1976.[224] In 1977, a TFT LCD (thin-film transistor LCD) display was demonstrated by a Sharp team consisting of Kohei Kishi, Hirosaku Nonomura, Keiichiro Shimizu and Tomio Wada.[225] The LCD color display was invented by Sharp’s Shinji Kato and Takaaki Miyazaki in May 1975,[226] and then improved by Fumiaki Funada and Masataka Matsuura in December 1975.[227]

The first LCD televisions were invented as color handheld televisions in Japan. In 1980, Hattori Seiko’s R&D group began development on pocket LCD color televisions, which led to the release of the first commercial TFT LCD displays by three of its subsidiaries.[228] In 1982, Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with an active-matrix LCD television.[229][193] In 1983, Casio released a handheld LCD television, the Casio TV-10.[230] In 1984, Epson released the ET-10, the first full-color, pocket LCD television.[231] Seiko Hattori subsidiary Citizen Watch introduced the Citizen Pocket TV, a color TFT LCD handheld television,[228][232] with a 2.7-inch display, in 1984.[232] By 1985, two other Seiko Hattori subsidiaries had also introduced TFT LCD handheld televisions, with Seiko’s color micro-TV and the Epson ELF.[228]

High definition television (HDTV)

As Japanese consumer electronics firms forged ahead with the development of HDTV technology, and as the MUSE format proposed by NHK, a Japanese company, was seen as a pacesetter that threatened to eclipse US electronics companies. MUSE, the development of which began in the 1970s,[233] was a hybrid system with analog and digital features.[234] Until 1990, the Japanese MUSE standard was the front-runner among the more than 23 different technical concepts under consideration.

Widescreen

Widescreen televisions date back to the 1970s, when Japan’s NHK introduced the MUSE high-definition television system, which was soon backed by Sony and other Japanese television manufacturers.[233]

LCD watches

Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971 for an electronic wristwatch incorporating a TN LCD display.[235] Sharp Corporation mass-produced TN LCD displays for watches in 1975.[119]

Large LCD displays

Sharp Corporation developed the first large LCD displays in 1986, based on color TFT LCD technology.[119] In 1988, Sharp introduced the first commercial large LCD television, a 14″ TFT LCD model with active matrix addressing. The release of Sharp’s large LCD TV in 1988 led to Japan launching an LCD industry, which developed large-size LCD displays, including TFT computer monitors and LCD televisions.[236]

Plasma

The world’s first color plasma display was produced by Fujitsu and released in 1989.[237]

LCD projectors

Epson developed the 3LCD color projection technology in the 1980s, and licensed it for use in LCD projectors in 1988.[238] The first color LCD video projectors were Epson’s compact 3LCD-based VPJ-700, released in January 1989,[193] and an LCD color video projector released by Sharp Corporation in 1989.[239] Epson’s 3LCD technology went on to be adopted by about 40 different projector brands worldwide.[238]

LED-backlit LCD

The world’s first LED-backlit LCD television was Sony’s Qualia 005, released in 2004.[240]

Electronics[edit]

Jun-ichi Nishizawa invented ion implantation in 1950.[136]

Neodymium magnets were invented independently in 1982 by General Motors (GM) and Sumitomo Special Metals.[241] It is the most widely used type of rare-earth magnet.[242]

Transistors and thyristors

In 1950, the static induction transistor was invented by Jun-ichi Nishizawa and Y. Watanabe.[243] It was the first type of JFET (junction gate field-effect transistor), with a short channel length.[244] In 1971, Jun-ichi Nishizawa invented the static induction thyristor.[245][246]

Diodes

The PIN diode/photodiode was invented by Jun-ichi Nishizawa and his colleagues in 1950.[247] This was the basis for the laser diode. In 1952, Nishizawa invented the avalanche photodiode.[245] Nishizawa also introduced tunnel injection in 1958, and invented the varicap (variable capacitance diode) in 1959.[136]

Lasers

In 1955, Jun-ichi Nishizawa invented the first solid-state maser.[245] In 1957, Nishizawa filed a patent for the first semiconductor laser,[245][90][248] and discovered semiconductor inductance.[136]

The continuous wave semiconductor laser was invented by Izuo Hayashi and Morton B. Panish in 1970. This led directly to the light sources in fiber-optic communication, laser printers, barcode readers, and optical disc drives, technologies that were commercialized by Japanese entrepreneurs.[137]: 252 

In 1992, Japanese inventor Shuji Nakamura invented the first efficient blue laser (blue LED).[249] Nakamura invented it with Isamu Akasaki and Hiroshi Amano, for which the three of them were awarded the 2014 Nobel Prize in Physics, stating that it «enabled bright and energy-saving white light sources», for applications such as LED lamps.[250]

Digital fax

The first digital fax machine was the Dacom Rapidfax, first sold in the late 1960s.[251][252]

Automated teller machine (ATM)

The idea of an automated teller machine (ATM), for out-of-hours cash distribution, developed from bankers’ needs in Japan.[253][254][255] The Japanese device was called «Computer Loan Machine» and supplied cash as a three-month loan at 5% p.a. after inserting a credit card. The device was operational in 1966.[256][257] The first microprocessor-based ATM machines were released by Busicom in the early 1970s, using the Intel 4004 (co-designed by Busicom’s Masatoshi Shima).[117]

Games[edit]

The first handheld electronic game was Electro Tic-Tac-Toe, released by Japanese manufacturer Waco in 1972.[258][259][260][261][262][263]

The first color video game was the 1973 arcade game Playtron, developed by Japanese company Kasco (Kansei Seiki Seisakusho Co.), which only manufactured two cabinets of the game.[264] The first video game to represent player characters as human sprite images was Taito’s Basketball, which was licensed in February 1974 to Midway, releasing it as TV Basketball in North America.[265][266] Tomohiro Nishikado’s arcade racing video game Speed Race, released by Taito in 1974, introduced scrolling graphics, where the sprites move along a vertical scrolling overhead track.[267]

The first tile-based video game was Namco’s arcade game Galaxian (1979).[268] It debuted the Namco Galaxian arcade system board, which used specialized graphics hardware, supporting RGB color and introducing multi-colored sprites, tilemap backgrounds,[269] a sprite line buffer system,[270] and scrolling graphics.[271] The Namco Galaxian hardware was widely adopted by other arcade game manufacturers during the golden age of arcade video games,[272] including Centuri, Gremlin, Irem, Konami, Midway, Nichibutsu, Sega and Taito.[273] It also inspired Nintendo’s hardware for Radar Scope and Donkey Kong as well as the Nintendo Entertainment System home console.[271]

Hardware sprite graphics was introduced by Namco’s Pac-Man (1980), with the Namco Pac-Man hardware.[274]

Instruments[edit]

Japanese electronic musical instruments were important to the development of electronic music and electronic dance music, such as the Roland TR-808[275][276] and TR-909 drum machines,[277][278] the Roland TB-303 bass synth,[279] and the Technics SL-1200 direct-drive turntable.[99]

Electronic organ

Yamaha engineer Mr. Yamashita invented the Yamaha Magna Organ in 1935. It was an electrostatic reed organ, a multi-timbral keyboard instrument based on electrically blown free reeds with pickups.[59][60]

Electronic drum

At NAMM 1964, Japanese company Ace Tone revealed the R-1 Rhythm Ace, the first fully transistorized electronic drum instrument. Created by Ikutaro Kakehashi, who later founded Roland Corporation, the R-1 was a hand-operated percussion device that played electronic drum sounds manually as the user pushed buttons, in a similar fashion to modern electronic drum pads.[280][281][282]

Since the 1970s, a number of Japanese companies began selling popular electronic drum kits, notably Roland’s Octapad and V-Drums, and Yamaha’s electronic Yamaha Drums and Yamaha DTX series. In 1997, Roland introduced its TD-10 model, a sound module for its V-Drums.

Rhythm machines (drum machines)

In 1963, Keio-Giken (Korg) released their first rhythm machine, Donca-Matic DA-20, using vacuum tube circuits for sounds and mechanical-wheel for rhythm patterns. It was a floor-type machine with built-in speaker, and featuring a keyboard for the manual play, in addition to the multiple automatic rhythm patterns. Its price was comparable with the average annual income of Japanese at that time.[283] Their efforts were then focused on the improvement of reliability and performance, along with the size reduction and the cost down. Unstable vacuum tube circuit was replaced with reliable transistor circuitry on Donca-Matic DC-11 in the mid-1960s, and in 1966, bulky mechanical-wheels were also replaced with compact transistor circuitry on Donca-Matic DE-20 and DE-11. In 1967, Korg Mini Pops MP-2 was developed as an option of the Yamaha Electone (electronic organ), and Mini Pops was established as a series of compact desktop rhythm machines.[283]

Nippon Columbia received a 1965 patent for an electronic automatic rhythm machine instrument. It described it as an «automatic rhythm player which is simple but capable of electronically producing various rhythms in the characteristic tones of a drum, a piccolo and so on.»[284]

At around the same time, Korg also introduced transistor circuitry for their Donca-Matic DC-11 electronic drum machine, some time between 1963 and 1966.[283] The Korg Mini Pops MP-2, MP-5 and MP-7 were released in 1967.[282] Korg’s Stageman and Mini Pops series of drum machines, introduced in 1967, were notable for «natural metallic percussion» sounds and incorporating controls for drum «breaks and fill-ins.»[285] The smaller MP-5 had 10 preset rhythms, while the larger MP-7 had 20 preset rhythms. Both had controls for tone, tempo, and volume, while the MP-7 also had dedicated faders for adding ouijada, guiro and tambourine. The controls allowed the user to press more than one preset to combine rhythms.[282] One notable use of a Mini Pops drum machine was by French musician Jean-Michel Jarre, in the final part of his breakthrough album, Oxygene (1976). This rhythm was achieved by overlaying two of the presets.[286] He also used it for his 1978 album Équinoxe.[282] The Donca-Matic is also referenced in Gorillaz’ «Doncamatic» (2010).[282]

As the result of their robustness and compact size, rhythm machines were gradually installed on electronic organs as accompaniment of organists, and finally spread widely. Ace Tone drum machines found their way into popular music starting in the late 1960s, followed by Korg and Roland drum machines in the early 1970s.[287] The first major pop song to use a drum machine was «Saved by the Bell» by Robin Gibb, which reached No. 2 in Britain in 1969. It used a «slow rock» rhythm preset on Ace Tone’s FR-1 Rhythm Ace.[285][288] The German krautrock band Can also used a drum machine on their song «Peking O» (1971), which combined acoustic drumming with Ace Tone’s Rhythm Ace drum machine.[289] The first album on which a drum machine produced all the percussion was Kingdom Come’s Journey, recorded in November 1972 using Ace Tone’s Bentley Rhythm Ace.[290] Timmy Thomas’ 1972 R&B single «Why Can’t We Live Together»/»Funky Me» featured a distinctive use of a Roland drum machine[291] and keyboard arrangement on both tracks. George McCrae’s 1974 disco hit «Rock Your Baby» used a drum machine,[292] an early Roland rhythm machine.[291]

Effects pedals

The Uni-Vibe, also known as Jax Vibra-Chorus,[293] is a footpedal-operated phaser or phase shifter for creating chorus and vibrato simulations for electric organ or guitar. Designed by audio engineer Fumio Mieda,[294] it was introduced in the 1960s by Japanese company Shin-ei, and then released in North America by Univox in 1968.[293] The pedals soon became favorite effects pedals of rock guitarists Jimi Hendrix and Robin Trower.[294]

In 1976, Roland subsidiary Boss Corporation released the CE-1 Chorus Ensemble, which was a stand-alone unit of the chorus/vibrato circuit found in the Roland JC-120 amplifier.[295] The chorus circuit from the amp was put it into a stomp box, making the CE-1 the first chorus pedal.[296] The chorus pedal went on to become a standard effects unit among guitarists.[297] Boss effects units subsequently became the de facto standard of guitar effects for decades, with many guitarists relying on them for sonic experimentation.[296]

Boss Corporation’s DD-2 Digital Delay, released in 1983, was the world’s first digital delay effects unit in stomp box form. It uses a custom integrated circuit (IC) chip that was originally developed for Roland Corporation’s SDE-3000 rack delay unit. It was succeeded by the DD-3 Digital Delay in 1986.[297] Boss Corporation’s RV-2 Digital Reverb, released in 1987, was the world’s first digital reverb pedal. It used a new custom DSP processor developed by Boss, originally for the RRV-10 Digital Reverb in the Micro Rack series.[297]

Analog synthesizers

Yamaha developed an early multi-voice polyphonic synthesizer, the Yamaha GX-1, in 1973.[298] In 1974, Roland Corporation released the EP-30, the first touch-sensitive electronic keyboard.[299] Roland released an early polyphonic string synthesizer, the Roland RS-202, in 1975, followed by the Roland RS-202 in 1976.[300][301]

Digital synthesizers

In 1973,[302] Yamaha licensed the algorithms for frequency modulation synthesis (FM synthesis) from John Chowning, who had experimented with it at Stanford University since 1971.[303] Yamaha’s engineers began adapting Chowning’s algorithm for use in a commercial digital synthesizer, adding improvements such as the «key scaling» method to avoid the introduction of distortion that normally occurred in analog systems during frequency modulation.[304] In the 1970s, Yamaha were granted a number of patents, under the company’s former name «Nippon Gakki Seizo Kabushiki Kaisha», evolving Chowning’s early work on FM synthesis technology.[305] Yamaha built the first prototype digital synthesizer in 1974.[302]

Released in 1979,[306] the Casio VL-1 was the first commercial digital synthesizer.[307] selling for $69.95.[306] The first commercial FM digital synthesizer was the Yamaha GS-1 in 1980.[308]

The mainstream breakthrough for digital synthesis came with the 1983 release of the FM-based Yamaha DX7,[309] one of the best-selling synthesizers of all time.[310][303]

Vowel–consonant synthesis is a type of hybrid digital-analog synthesis developed by Casio and first employed by the early Casiotone keyboards in the early 1980s.[311]

Sequencer

In the early 1970s, Ralph Dyck, a Canadian composer and technologist, developed a prototype digital music sequencer, based on TTL digital circuitry, shift-register memory, and single-channel audio. There were no North American companies interested in his prototype, until Japanese company Roland Corporation took an interest in it. Roland founder Ikutaro Kakehashi saw the prototype, and decided to build a digital sequencer based on his prototype, making a number of major changes.[312][313] Kakehashi decided to replace the TTL circuitry with a microprocessor,[312][313] replace the small shift-register memory with larger RAM memory,[312][314] and increase the audio channels from a single channel to eight channels.[313] As Dyck was generally unfamiliar with how to use a microprocessor for a sequencer, Kakehashi hired Yukio Tamada to design and build a microprocessor-based sequencer.[312] Roland switched from discrete circuitry to the then brand new Intel 8080A 8-bit microprocessor and increased the memory from 512 bytes shift-register memory to 16 KB RAM memory, allowing storage of over 5,300 notes,[314][312] which could be entered via the calculator keyboard (the preferred method) or recorded in real-time (not so easy).

In 1977, Roland Corporation released the MC-8 Microcomposer, also called a computer music composer by Roland. It was the first standalone, microprocessor-based, digital CV/Gate music sequencer,[280][315][199] and an early polyphonic sequencer.[316][317] It introduced new features, such as a keypad to enter note information; 16 kilobytes of random access memory which allowed a maximum sequence length of 5200 notes, a huge step forward from the 8–16 step sequencers at the time;[318][319] the allocation of multiple pitch CVs to a single Gate channel, creating polyphonic parts within the overall sequence;[318] and eight-channel polyphony, allowing the creation of polyrhythmic sequences.[313]

The swingy funk element present throughout the Japanese synthpop album Yellow Magic Orchestra (1978) was expressed by Hideki Matsutake programming through subtle variations of the MC-8’s input.[320] Giorgio Moroder was another early commercial user of the MC-8, having used it from the late 1970s to the 1980s.[321] Other notable users include Ryuichi Sakamoto,[322][320] Altered Images, Chris Carter, Suzanne Ciani, Chris & Cosey, Kraftwerk, Landscape, The Human League, Martin Rushent, Pete Shelley, Tangerine Dream,[313] Richard James Burgess,[323] Vince Clarke,[324][313][325] Throbbing Gristle, Isao Tomita, Toto,[313] Yellow Magic Orchestra,[320][326][327] and Hans Zimmer.[313]

The MC-8 was the first in the Microcomposer family of sequencers, including the Roland MC-4 Microcomposer and Roland MC-202. The Roland MC-8 had a significant impact on electronic music, with the MC-8 and its descendants having more of an impact on electronic music production in the 1970s and 1980s than any other family of sequencers.[313] CV/Gate sequencers such as the MC-8 and MC-4 were eventually succeeded by MIDI sequencers in the 1980s.[199] The Microcomposer series continued with grooveboxes, including the Roland MC-202 (1983), MC-303 (1996), MC-505 (1998), MC-09 (1999), MC-307 (1999), MC-909 (2002) and MC-808 (2006).

Programmable drum machines (step sequencers)

Prior to Ikutaro Kakehashi’s founding of Roland Corporation in 1972, Kakehashi had discussed the idea of a programmable drum machine while at Ace Tone, some time between 1967 and 1972.[328] In 1975,[329] Ace Tone released the Rhythm Producer FR-15 that enables the modification of the pre-programmed rhythm patterns.[330]

1978 saw the release of the Roland CR-78, the first microprocessor programmable rhythm machine,[280][331] with four memory banks to store user patterns,[282] and controls for accents and muting.[331] Its combination of programmability and familiar preset rhythms made it popular from the late 1970s to the early 1980s, widely adopted by artists such as Blondie, Phil Collins, Ultravox,[282] Underworld, Fatboy Slim, BT, Gary Numan, 808 State, Peter Gabriel, Hall & Oates, Jimmy Edgar, Genesis, Überzone, Bryan Ferry, Men Without Hats, John Foxx and OMD.[332]

The Roland TR-808, released in 1980, was the first drum machine with the ability to program an entire percussion track of a song from beginning to end, complete with breaks and rolls.[333] It also includes volume knobs for each voice,[275] and has bass drum decay controls that could lengthen the sound to create uniquely low frequencies which flatten over long periods,[334] which can be used to create basslines[335] or bass drops.[336] The TR-808 became one of the most influential inventions in popular music,[337][335] used on more hit records than any other drum machine,[338] and shaping genres such as dance, electronic, hip hop and pop music.[276]

Bass synthesizer-sequencers

The first bass synthesizer with a music sequencer was the Firstman SQ-01.[339][340] It was originally released in 1980 by Hillwood/Firstman, a Japanese synthesizer company founded in 1972 by Kazuo Morioka (who later worked for Akai in the early 1980s), and was then released by Multivox for North America in 1981.[341][342][301] The most influential bass synthesizer-sequencer was the Roland TB-303, released in 1981, later becoming the basis of acid house music.[343]

Digital Control Bus (DCB) and DIN sync

In 1980, Roland Corporation introduced the Digital Control Bus (DCB) communications protocol, using the DIN sync interface to synchronize different electronic musical instruments. It was introduced with the Roland TR-808 in 1980, considered groundbreaking at the time, followed by other Roland equipment in 1981. It was the precursor to MIDI, which adopted most of its features from the DCB protocol, including the same type of connectors as the DIN sync interface.[275][344]

DCB was introduced in 1980 with the Roland TR-808, followed by other Roland equipment, including the CR-8000, TR-606, TB-303, EP-6060,[275] Jupiter-8, and Juno-60.[345] It uses DIN sync connectors, and DCB functions were basically the same as MIDI, which it was the basis for.[275]

DIN sync was introduced by Roland Corporation for the synchronization of music sequencers, drum machines, arpeggiators and similar devices, as part of the Digital Control Bus protocol. It was introduced in 1980 with the Roland TR-808, followed by other Roland equipment in 1981, including the CR-8000, TR-606, TB-303 and EP-6060. It was the basis for the MIDI interface, released in 1983, which eventually superseded it.[275] DIN sync was also adopted by non-Roland instruments, such as Linn Electronics’ LinnDrum.[213]

MIDI (Musical Instrument Digital Interface)

In 1981, Roland founder Ikutaro Kakehashi proposed the concept of standardization to Oberheim Electronics, Sequential Circuits, Yamaha, Korg and Kawai.[346] A common MIDI standard was developed, working with Roland’s pre-existing DCB as a basis,[275] by Roland, Yamaha, Korg, Kawai, and Sequential Circuits.[346][347]: 20  MIDI was publicly announced in 1982.[348]: 276  MIDI allowed communication between different instruments and general-purpose computers to play a role in music production.[199] Since its introduction, MIDI has remained the musical instrument industry standard interface through to the present day.[349] Kakehashi received the 2013 Technical Grammy Award for the invention of MIDI.[350][351]

PCM sampler

The first PCM digital sampler was Toshiba’s LMD-649,[352] created in 1981 by engineer Kenji Murata for Japanese electronic music band Yellow Magic Orchestra, who used it for extensive sampling and looping in their 1981 album Technodelic.[353]

MIDI instruments

The first MIDI synthesizers were the Roland Jupiter-6 and the Prophet 600, both released in 1982.[354][355] The first MIDI sequencer was Roland Corporation’s MSQ-700, released in 1983.[356] Sequential Circuits CEO Dave Smith demonstrated MIDI by connecting the Prophet 600 to a Jupiter-6 during the January 1983 Winter NAMM Show.[357]

While the Roland TR-808 was fully based on analog synthesis, the Roland TR-909, released in 1983, combined analogue synthesis with digital sampling.[358] It was also the first MIDI drum machine.[354][355] Much like the TR-808’s importance to hip hop, the TR-909 holds a similar important for electronic dance music, such as techno and house music.[277][278] For example, the seminal deep house track «Can You Feel It» (1986) was produced using the Roland Juno-60 polyphonic synthesizer for the bassline and the TR-909 rhythm machine for the drumline.[359][360]

USB drum MIDI controllers are often designed to resemble popular classic drum machines such as the Roland TR-808 and Akai MPC.[361]

Groovebox

The Roland MC-202, released in 1983, was the first groovebox. The term «groovebox» was later coined by Roland Corporation in reference to its successor, the Roland MC-303, released in 1996.[362]

Wind synths

From the mid-1980s, Akai developed a range of wind synths. Their EWI-1000 wind controller and EVI-1000 valve controller, like the Lyricon, were paired with a dedicated analog, voltage-controlled voice module, the EWV-2000. The EWV-2000 had no MIDI IN, though it did have MIDI OUT. The EWI-1000/EWV-2000 pair were actually a hybrid digital/analog system. Analog signals were derived from the various sensors (e.g., key, bite, bend, etc.) on the EWI-1000 controller unit, then converted to digital signals by a front-end microprocessor in the EWV-2000. These digital signals were then altered by the microprocessor and D/A converted to internal analog control voltages appropriate for the analog synthesizer IC’s within the EWV-2000. The D/A used within the EWV-2000 used a very high resolution and conversion rate, such that the responsiveness to the player felt immediate, i.e. «analog.» The subsequent EWI-3000 and EWI-3020 systems also used this A/D/A scheme within their dedicated tone modules, though these later models of the EWI would support MIDI IN and OUT.

Linear Arithmetic synthesis

Linear Arithmetic synthesis (LA synthesis) is a type of sound synthesis invented by Roland Corporation, introduced with the Roland D-50 synthesizer in 1987.[348]: 434  LA synthesis was since used by a number of other Roland equipment, such as the MT-32 sound module in 1987 and the E-20 synthesizer in 1988.

The Roland D-50 is a polyphonic 61-key digital synthesizer, produced by Roland and released in 1987. Its features include Linear Arithmetic synthesis, on-board effects, a joystick for data manipulation, and an analogue synthesis-styled layout design. It was also produced in a rack-mount variant design, the D-550 (1987–1990), with almost 450 user-adjustable parameters.[363] The D-50 saw widespread use in popular music, with a distinctive sound that largely defined popular late 1980s music.[363] Today, the D-50 is still highly popular as affordable vintage synth. It has the highest score by users of all synths at VintageSynth.[364] The D-50 was the first affordable synthesizer to combine sample playback with digital synthesis, a process that Roland called Linear Arithmetic synthesis.

Memory[edit]

Magnetic disks

What may have been the idea of the first floppy disk, or magnetic disk sheet, was invented by Yoshiro Nakamatsu at the Tokyo Imperial University in 1950.[365][366] He received a Japanese patent in 1952,[367][368] and a 1958 American patent, for a magnetic disk record sheet.[369] Nippon Columbia planned to commercialized his magnetic disc sheet recorder in 1960.[370] He licensed a number of patents to IBM,[367][371][372] reaching licensing agreements with them in the 1970s.[365][373][374]

Sony introduced the 3½-inch floppy disk format, called the micro floppy disk. The first commercial micro floppy disk drive was the Sony OA-D30V, released in 1981.[375] Sony’s initial 3½-inch floppy disk format was dual-sided and held 875 KB of data storage.

In 1990, Toshiba’s MK1122FC was the first hard disk drive to use a glass hard disk drive platter, replacing the earlier aluminium platters. Glass platters had several advantages, such as greater shock resistance, compared to aluminium platter.[376]

Random-access memory (RAM)

The Toshiba Toscal BC-1411 electronic calculator, which debuted in 1965,[377][378] introduced an early form of dynamic random-access memory (DRAM) built from discrete components.[378]

By 1986, NEC and AMD were manufacturing 32 KB VRAM (Video RAM) chips, compared to Texas Instruments which were manufacturing 8 KB VRAM chips at the time.[379]

Optical discs

The compact disc (CD) format was developed by Sony and Philips in 1979, and commercially released in 1982. The CD-ROM format was developed by Japanese company Denon in 1982. It was an extension of Compact Disc Digital Audio, and adapted the format to hold any form of digital data, with a storage capacity of 553 MiB.[380] CD-ROM was then introduced by Denon and Sony at a Japanese computer show in 1984.[196]

In 1984, Sony introduced a LaserDisc format that could store any form of digital data, as a data storage device similar to CD-ROM, with a larger capacity of 3.28 GiB.[196] The DVD format was developed by Sony, Panasonic and Toshiba in 1994. The same year, Sony and Tatung Company released the first DVD player.

Flash memory

Flash memory (both NOR and NAND types) was invented by Dr. Fujio Masuoka while working for Toshiba around 1980.[381][382]

Metallurgy[edit]

Mitsubishi process

Developed by the Mitsubishi Heavy Industries and superior to the conventional process, it is a continuous copper smelting and converting process comprising three steps—smelting of raw materials by injection, separation of slag and matte, and direct converting of high-grade matte. Since commercial operation began in 1974, the hearth productivity has been doubled, and several other improvements have been made, including higher-grade matte smelting and the treatment of various secondary materials.[383]

Printing[edit]

Electronic printer

The first electronic printer was the EP-101, invented by Japanese company Epson and released in 1968.[384][385]

Inkjet printer

The world’s first inkjet printer was Casio’s Typuter, released in 1971.[108]

Thermal transfer printing

Invented by SATO corporation,[386] a Japanese company.[387] They produced the world’s first thermal transfer label printer, SATO M-2311, in 1981.[386]

3D printing

In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter.[388][389]

Hydrographics

Hydrographics, also known variously as immersion printing, water transfer printing, water transfer imaging, hydro dipping, or cubic printing has an somewhat fuzzy history. Three different Japanese companies are given credit for its invention. Taica Corporation claims to have invented cubic printing in 1974. However, the earliest hydrographic patent was filed by Motoyasu Nakanishi of Kabushiki Kaisha Cubic Engineering in 1982.[390]

Textiles[edit]

Timekeeping[edit]

Automatic quartz

The first watch to combine self-winding with a crystal oscillator for timekeeping was unveiled by Seiko in 1986.[391]

Quartz wristmatch

The world’s first quartz wristwatch was revealed in 1967: the prototype of the Astron revealed by Seiko in Japan, where it was in development since 1958. It was eventually released to the public in 1969.[392]

Spring Drive

A watch movement which was first conceived by Yoshikazu Akahane working for Seiko in 1977 and was patented in 1982. It features a true continuously sweeping second hand, rather than the traditional beats per time unit, as seen with traditional mechanical and most quartz watches.[393]

Video[edit]

Video tape

Dr. Norikazu Sawazaki invented a prototype video tape recorder in 1953, based on helical scan technology.[394]

Video disc

In Japan, the TOSBAC computer was using digital video disks to display color pictures at 256×256 image resolution in 1972.[395]

In 1975, Hitachi introduced a video disc system in which chrominance, luminance and sound information were encoded holographically. Each frame was recorded as a 1mm diameter hologram on a 305mm disc, while a laser beam read out the hologram from three angles.[396] In 1978, Hitachi invented a digital video storage system, which they received a patent for.[397]

In the late 1970s to the early 1980s, several types of video production equipment that were digital in their internal workings were introduced, including digital video effects (DVE) units such as the Nippon Electric Corporation (NEC) DVE.

Other[edit]

Artificial snowflake

The first artificial snowflake was created by Japanese physicist Ukichiro Nakaya in 1936, three years after his first attempt.[398]

Rollerball pen

The first rollerball pen was invented in 1963 by the Japanese company Ohto.[399]

References[edit]

  1. ^ Fukui, Kenichi; Yonezawa, Teijiro; Shingu, Haruo (1952). «A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons». The Journal of Chemical Physics. 20 (4): 722. Bibcode:1952JChPh..20..722F. doi:10.1063/1.1700523.
  2. ^ Fukui, K (November 1982). «Role of Frontier Orbitals in Chemical Reactions». Science. 218 (4574): 747–754. Bibcode:1982Sci…218..747F. doi:10.1126/science.218.4574.747. PMID 17771019. S2CID 268306.
  3. ^ Fukui, K.; Yonezawa, T.; Shingu, H. (1952). «A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons». The Journal of Chemical Physics. 20 (4): 722. Bibcode:1952JChPh..20..722F. doi:10.1063/1.1700523.
  4. ^ Bell J, Johnstone B, Nakaki S: The new face of Japanese science. New Scientist, 21 March 1985, p. 31.
  5. ^ Sri Kantha S: Kenichi Fukui. In, Biographical Encyclopedia of Scientists, edited by Richard Olson, Marshall Cavendish Corp, New York, 1998, pp. 456–458.[ISBN missing]
  6. ^ The Chemical Intelligencer 1995, 1(2), 14–18, Springer-Verlag, New York, Inc.[full citation needed]
  7. ^ «Biographical Snapshots | Chemical Education Xchange». Jce.divched.org. Retrieved 2015-11-09.
  8. ^ «Kenichi Fukui – Biographical». Nobelprize.org. Retrieved 2015-11-09.
  9. ^ «The Nobel Prize in Chemistry 2001». Nobel Foundation. Retrieved 2009-12-19.
  10. ^ «The Nobel Prize in Chemistry 2001».
  11. ^ Shimomura O, Johnson FH, Saiga Y (June 1962). «Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea». Journal of Cellular and Comparative Physiology. 59 (3): 223–39. doi:10.1002/jcp.1030590302. PMID 13911999.
  12. ^ «The Nobel Prize in Chemistry 2008». Nobel Foundation. Retrieved 2015-08-24.
  13. ^ «The Nobel Prize in Chemistry 2002». Nobel Foundation. Retrieved 2009-12-19.
  14. ^ «The Nobel Prize in Chemistry 2002».
  15. ^ «The Nobel Prize in Chemistry 2000». Nobel Foundation. Retrieved 2009-12-19.
  16. ^ a b c Radomir S. Stanković (University of Niš), Jaakko T. Astola (Tampere University of Technology), Mark G. Karpovsky (Boston University), Some Historical Remarks on Switching Theory, 2007, DOI 10.1.1.66.1248
  17. ^ a b c d e Stanković, Radomir S. [in German]; Astola, Jaakko Tapio [in Finnish], eds. (2008). Reprints from the Early Days of Information Sciences: TICSP Series on the Contributions of Akira Nakashima to Switching Theory (PDF). Tampere International Center for Signal Processing (TICSP) Series. Vol. 40. Tampere University of Technology, Tampere, Finland. ISBN 978-952-15-1980-2. ISSN 1456-2774. Archived from the original (PDF) on 2021-03-08. (3+207+1 pages) 10:00 min
  18. ^ Hozumi N, Tonegawa S (1976). «Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions». Proc. Natl. Acad. Sci. U.S.A. 73 (10): 3628–3632. Bibcode:1976PNAS…73.3628H. doi:10.1073/pnas.73.10.3628. PMC 431171. PMID 824647.
  19. ^ «The Nobel Prize in Physiology or Medicine 1987». Nobel Foundation. Retrieved 2009-12-19.
  20. ^ The Noble Foundation (1949) Nobel Prize in Physics 1949 – Presentation Speech
  21. ^ Nambu, Yoichiro (2008). Karl Grandin (ed.). «Les Prix Nobel – The Nobel Prizes 2008». Stockholm: The Nobel Foundation. Archived from the original on 2014-10-11. Retrieved 2015-07-19.
  22. ^ a b M. Kobayashi; T. Maskawa (1973). «CP-Violation in the Renormalizable Theory of Weak Interaction». Progress of Theoretical Physics. 49 (2): 652–657. Bibcode:1973PThPh..49..652K. doi:10.1143/PTP.49.652.
  23. ^ «Top Cited Articles of All Time (2010 edition)». SLAC. 2009. Retrieved 2014-06-21.
  24. ^ The Nobel Prize in Physics 2008, The Nobel Foundation, retrieved 2009-10-17
  25. ^ Esaki, Leo, «Long Journey into Tunneling,» Nobel Lecture, 12 December 1973.
  26. ^ a b Esaki, Leo (1958-01-15). «New Phenomenon in Narrow Germanium p-n Junctions». Physical Review. 109 (2): 603–604. Bibcode:1958PhRv..109..603E. doi:10.1103/PhysRev.109.603.
  27. ^ Diode type semiconductor device United States patent 3,033,714
  28. ^ Esaki, L.; Kurose, Y.; Suzuki, T. (1957). «Ge P–N Junction のInternal Field Emission». 日本物理学会年会講演予稿集. 12 (5): 85.
  29. ^ Sony History – Chapter 9 The Model 2T7 Transistor
  30. ^ «The Nobel Prize in Physics 1965». Nobel Foundation. Retrieved 2009-12-19.
  31. ^ «The Nobel Prize in Physics 2002». Nobel Foundation. Retrieved 2009-12-19.
  32. ^ Pagliaroli, G.; Vissani, F.; Costantini, M. L.; Ianni, A. (2009). «Improved analysis of SN1987A antineutrino events». Astroparticle Physics. 31 (3): 163–176. arXiv:0810.0466. Bibcode:2009APh….31..163P. doi:10.1016/j.astropartphys.2008.12.010. S2CID 119089069.
  33. ^ Davenport, Christian (2010). «Rashomon Effect, Observation, and Data Generation». Media Bias, Perspective, and State Repression: The Black Panther Party. Cambridge, UK: Cambridge University Press. pp. 52–73, esp. 55. ISBN 9780521759700.
  34. ^ «Japanese Patents and Inventions». Nature. 135 (3406): 218. February 1935. Bibcode:1935Natur.135R.218.. doi:10.1038/135218b0. S2CID 4105301.
  35. ^ a b Kudo, Akira (2012). Japanese-German Business Relations Co-operation and Rivalry in the Interwar Period. Routledge. ISBN 978-0-203-01851-4. OCLC 7385499096.[page needed]
  36. ^ Rose, Anthony (2018). Sake and the wines of Japan. Oxford: Infinite Ideas. ISBN 978-1-906821-62-3. OCLC 1130842600.[page needed]
  37. ^ Ashcraft, Brian (2020). The Japanese Sake Bible: Everything You Need to Know About Great Sake With Tasting Notes & Scores for 100 Top Brands. Tuttle Publishing. OCLC 1191809938.[page needed]
  38. ^ «BAJ Website | The history of the battery : 1) The Yai dry-battery». baj.or.jp. Retrieved 2020-12-29.
  39. ^ «(3)企業の成長と内国勧業博覧会の終焉 | 第3部 出展品からみる明治日本の産業 | 博覧会―近代技術の展示場». ndl.go.jp (in Japanese). Retrieved 2020-12-30.
  40. ^ «【1917 to 1944】Transformation to a Modern Company | Visionary | Shimadzu Corporation». shimadzu.com. Retrieved 2020-12-30.
  41. ^ «1894 (Meiji 27) onwards | History | Visionary | Shimadzu Corporation». shimadzu.com. Retrieved 2020-12-30.
  42. ^ «The dream of «Made in Japan» | Visionary | Shimadzu Corporation». shimadzu.com. Retrieved 2020-12-30.
  43. ^ a b «Milestones:Development of Electronic Television, 1924–1941». Retrieved 2015-12-11.
  44. ^ Kenjiro Takayanagi: The Father of Japanese Television, NHK (Japan Broadcasting Corporation), 2002, retrieved 2009-05-23.
  45. ^ High Above: The untold story of Astra, Europe’s leading satellite company, p. 220, Springer Science+Business Media
  46. ^ Albert Abramson, Zworykin, Pioneer of Television, University of Illinois Press, 1995, p. 231. ISBN 0-252-02104-5.
  47. ^ (PDF) https://www.ieice.org/eng_r/assets/pdf/publication/milestone/b60-62.pdf.
  48. ^ Quan, Guan (2001). «Technological Innovations and the Patent System in Prewar Japan». Hitotsubashi Journal of Commerce and Management. 36 (1 (36)): 19–36. JSTOR 43294983.
  49. ^ (PDF) https://dl.cdn-anritsu.com/en-en/about-anritsu/corporate-information/track/footprint120.pdf.
  50. ^ Nagaoka, Hantaro (1929). «Possibility of the Radio Transmission being disturbed by Meteoric Showers». Proceedings of the Imperial Academy. 5 (6): 233–236. doi:10.2183/pjab1912.5.233.
  51. ^ «The Yagi-Uda Antenna – Yagi Antennas». antenna-theory.com. Retrieved 2020-12-30.
  52. ^ «Photo-telegraph service introduced (NE-type)». park.org. Retrieved 2020-12-30.
  53. ^ Yang, Daqing (2010). Technology of empire: telecommunications and Japanese expansion in Asia, 1883-1945. Vol. 219. Cambridge, Mass: Harvard University Asia Center : Distributed by Harvard University Press. doi:10.2307/j.ctt1tg5mft. ISBN 978-1-68417-379-2. JSTOR j.ctt1tg5mft. OCLC 1001536884.[page needed]
  54. ^ Yamada, Akihiko (2004). «History of Research on Switching Theory in Japan». IEEJ Transactions on Fundamentals and Materials. 124 (8): 720–726. Bibcode:2004IJTFM.124..720Y. doi:10.1541/ieejfms.124.720.
  55. ^ a b c Switching Theory/Relay Circuit Network Theory/Theory of Logical Mathematics, IPSJ Computer Museum, Information Processing Society of Japan
  56. ^ a b 【Electrotechnical Laboratory】 ETL Mark I Relay-Based Automatic Computer, Information Processing Society of Japan
  57. ^ a b c d e f g Early Computers: Brief History, Information Processing Society of Japan
  58. ^ Turner, Laurence Beddome (2013) [1931]. Wireless : a treatise on the theory and practice of high-frequency electric signalling / monograph. Cambridge: Cambridge University Press. ISBN 978-1-107-63618-7. OCLC 907253099.[page needed]
  59. ^ a b 一時代を画する新楽器完成 浜松の青年技師山下氏 [An epoch new musical instrument was developed by a young engineer Mr.Yamashita in Hamamatsu]. Hochi Shimbun (in Japanese). 1935-06-08.
  60. ^ a b 新電氣樂器 マグナオルガンの御紹介 [New Electric Musical Instrument – Introduction of Magna Organ] (in Japanese). Hamamatsu: 日本樂器製造株式會社 (Yamaha). October 1935. 特許第一〇八六六四号, 同 第一一〇〇六八号, 同 第一一一二一六号
  61. ^ «Toshiba Science Museum : Trial Production of the World’s First Double-Coil Bulb». toshiba-mirai-kagakukan.jp. Retrieved 2020-12-30.
  62. ^ Honda, Kōtarō (1928). Magnetic properties of matter (1st ed.). Tokyo, Japan: Syokwabo and Company.
  63. ^ a b Yonekura, Seiichirō (2002). The Japanese iron and steel industry, 1850-1990 continuity and discontinuity. Basingstoke: Palgrave Macmillan. ISBN 978-0-333-61131-9. OCLC 1073544154.[page needed]
  64. ^ «Tokushichi Mishima Dies; Invented a Magnetic Steel». The New York Times. 1975-11-21.
  65. ^ «Permanent magnet containing copper» (PDF). freepatentsonline.com. Retrieved 2020-12-30.
  66. ^ a b Semiconductor Technologies, Ohmsha, 1982
  67. ^ Yonekura, Seiichirō, 1953- (1994). The Japanese iron and steel industry, 1850-1990 : continuity and discontinuity. New York: St Martin’s Press. ISBN 0-312-10673-4. OCLC 28797848.{{cite book}}: CS1 maint: multiple names: authors list (link)[page needed]
  68. ^ «北九州イノベーションギャラリー|Kitakyushu Innovation Gallery & Studio [KIGS]». kigs.jp. Retrieved 2020-12-31.
  69. ^ «IJN Hosho Light Aircraft Carrier». www.globalsecurity.org. Retrieved 2020-12-30.
  70. ^ Watts, Anthony John (1967). Japanese warships of World War II. OCLC 251618693.[page needed]
  71. ^ Murray, Williamson; Millet, Alan R. (1998). Military innovation in the interwar period (1st paperback ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-26688-9. OCLC 852896224.[page needed]
  72. ^ Brown, D. K (2006). Nelson to Vanguard: warship development, 1923–1945. London: Chatham. ISBN 978-1-59114-602-5. OCLC 173973193.[page needed]
  73. ^ Zaloga, Steve; Bull, Peter (2007). Japanese tanks : 1939–45. Oxford: Osprey. ISBN 978-1-84603-091-8. OCLC 132312488.[page needed]
  74. ^ Brown, David (1990). Warship losses of World War Two. London: Arms and Armour. ISBN 0-85368-802-8. OCLC 23052489.[page needed]
  75. ^ Ryōtarō, Shiba (2013). Birnbaum, Phyllis (ed.). Clouds above the Hill. doi:10.4324/9780203068724. ISBN 978-0-203-06872-4.[page needed]
  76. ^ Evans, David C.; Peattie, Mark R. (2015-01-15). Kaigun : strategy, tactics, and technology in the Imperial Japanese Navy, 1887–1941. Annapolis, Md. ISBN 978-1-61251-425-3. OCLC 897464699.[page needed]
  77. ^ Evans, David C.; Peattie, Mark R. (2015-01-15). Kaigun : strategy, tactics, and technology in the Imperial Japanese Navy, 1887–1941. Annapolis, Md. ISBN 978-1-61251-425-3. OCLC 897464699.[page needed]
  78. ^ Brook, Peter (1999). Warships for export : Armstrong warships, 1867–1927. Gravesend, Kent: World Ship Society. ISBN 0-905617-89-4. OCLC 43148897.[page needed]
  79. ^ Evans, David C.; Peattie, Mark R. (2015-01-15). Kaigun : strategy, tactics, and technology in the Imperial Japanese Navy, 1887–1941. Annapolis, Md. ISBN 978-1-61251-425-3. OCLC 897464699.[page needed]
  80. ^ Howe, Christopher (1996). The origins of Japanese trade supremacy: development and technology in Asia from 1540 to the Pacific War. Chicago: University of Chicago Press. ISBN 0-226-35485-7. OCLC 31971500.[page needed]
  81. ^ Evans, David C (2012). Kaigun: strategy, tactics, and technology in the imperial Japanese navy 1887-1941. Place of publication not identified: Seaforth Publishing. ISBN 978-1-84832-159-5. OCLC 939027390.[page needed]
  82. ^ a b Pleshakov, Konstantin (2008). The tsar’s last armada: the epic journey to the Battle of Tsushima. New York: Basic Books. ISBN 978-0-7867-2549-6. OCLC 818855512.
  83. ^ «Shimose, Masachika | Portraits of Modern Japanese Historical Figures». ndl.go.jp. Retrieved 2020-12-31.
  84. ^ McNab, Chris; Noon, Steve; Gilliland, Alan (2015). The flamethrower. ISBN 978-1-4728-0902-5. OCLC 929030814.[page needed]
  85. ^ «The Story of Sakichi Toyoda | Toyota Industries Corporation». toyota-industries.com. Retrieved 2020-12-29.
  86. ^ «コラム 明治の特許制度 | 第1部 1900年までに開催された博覧会 | 博覧会―近代技術の展示場». ndl.go.jp (in Japanese). Retrieved 2020-12-31.
  87. ^ Choi, Eugene K. (2011). «Another Spinning Innovation: The Case of the Rattling Spindle, Garabō, in the Development of the Japanese Spinning Industry». Australian Economic History Review. 51 (1): 22–45. doi:10.1111/j.1467-8446.2011.00323.x. OCLC 6896286227.
  88. ^ Sakurada, Ichiro (1951). «Synthetic Fiber». Journal of Synthetic Organic Chemistry, Japan. 9 (9): 163–167. doi:10.5059/yukigoseikyokaishi.9.9_163.
  89. ^ Fraser, K.C. (2013-03-22). «Historical Dictionary of the Democratic People’s Republic of Korea2013123James E. Hoare. Historical Dictionary of the Democratic People’s Republic of Korea . Lanham, MD, and Plymouth: Scarecrow Press 2012. lxi+490 pp., ISBN: 978 0 8108 6151 0 (print); 978 0 8108 7987 4 (e‐book) £75; $119 Historical Dictionaries of Asia, Oceania and the Middle East». Reference Reviews. 27 (3): 58. doi:10.1108/09504121311308903.
  90. ^ a b c d e The Third Industrial Revolution Occurred in Sendai, Soh-VEHE International Patent Office, Japan Patent Attorneys Association
  91. ^ «Are Patents Indicative of Chinese Innovation?». ChinaPower Project. 2016-02-15. Retrieved 2021-04-16.
  92. ^ a b Fine, Thomas (2008). Barry R. Ashpole (ed.). «The Dawn of Commercial Digital Recording» (PDF). ARSC Journal. Retrieved 2010-05-02.
  93. ^ «How the CD was developed». BBC News. 2007-08-17. Retrieved 2007-08-17.
  94. ^ Klatt, D (1987). «Review of text-to-speech conversion for English». Journal of the Acoustical Society of America. 82 (3): 737–93. Bibcode:1987ASAJ…82..737K. doi:10.1121/1.395275. PMID 2958525.
  95. ^ Billboard, 21 May 1977, p. 140
  96. ^ a b Brian Coleman, The Technics 1200 — Hammer Of The Gods, Medium
  97. ^ a b c d Trevor Pinch, Karin Bijsterveld, The Oxford Handbook of Sound Studies, p. 515, Oxford University Press
  98. ^ «History of the Record Player Part II: The Rise and Fall». Reverb.com. October 2015. Retrieved 2016-06-05.
  99. ^ a b c d e Six Machines That Changed The Music World, Wired, May 2002
  100. ^ The World of DJs and the Turntable Culture, p. 43, Hal Leonard Corporation, 2003
  101. ^ «Rane.com». Archived from the original on 2009-08-10. Retrieved 2017-06-02.
  102. ^ Hormby, Thomas (2006-09-15). «The Story Behind the Sony Walkman». Low End Mac. Retrieved 2007-03-04.
  103. ^ a b «Shinkansen Chronology». 2009-02-15. Archived from the original on 2009-02-15. Retrieved 2020-12-30.
  104. ^ «Minicars: Cheap and Cheerful», Peter Nunn, JAMA, January–February 2005
  105. ^ «Owning a Car in Japan» Archived 8 February 2012 at the Wayback Machine, ALTs in Sendai
  106. ^ «Keywords to understanding Sony Energy Devices|Sony Energy Devices Corporation». 2016-03-04. Archived from the original on 2016-03-04. Retrieved 2020-12-29.
  107. ^ «Casio 14-A». It History Society. 2015-12-15.
  108. ^ a b c d Chronology of Main Products, Casio
  109. ^ History of Casio, Casio, 2014
  110. ^ «Casio AL-1000».
  111. ^ Rick Bensene. «Sharp QT-8D Electronic Calculator». The Old Calculator Web Museum. Retrieved 2010-09-29.
  112. ^ «Sharp History – 1969–1970: From Senri to Tenri». SHARP World. Sharp Corporation. Retrieved 2010-09-30.
  113. ^ a b Nigel Tout. «Sharp QT-8D «micro Compet»«. Vintage Calculators Web Museum. Retrieved 2010-09-29.
  114. ^ Nigel Tout. «Sharp QT-8B «micro Compet»«. Vintage Calculators Web Museum. Retrieved 2010-10-02.
  115. ^ a b c d e f Aspray, William (1994-05-25). «Oral-History: Tadashi Sasaki». Interview No. 211 for the Center for the History of Electrical Engineering. The Institute of Electrical and Electronics Engineers, Inc. Retrieved 2013-01-02.
  116. ^ «The one-chip calculator is here, and it’s only the beginning», Electronic Design, 18 February 1971, p. 34
  117. ^ a b c d e f g h i j k Masatoshi Shima, IEEE
  118. ^ a b c d e Nigel Tout. «The Busicom 141-PF calculator and the Intel 4004 microprocessor». Retrieved 2009-11-15.
  119. ^ a b c Note on the Liquid Crystal Display Industry, Auburn University, 1995
  120. ^ Michael R. Peres (2013), The Focal Encyclopedia of Photography, p. 779, Taylor & Francis
  121. ^ Shapiro, Mark (2006). «The History of Camcorders». San Diego, CA: Internet Video Magazine. Archived from the original on 2012-11-21. Retrieved 2009-12-27.
  122. ^ Nikon SLR-type digital cameras, Pierre Jarleton
  123. ^ a b David D. Busch (2011), Nikon D70 Digital Field Guide, p. 11, John Wiley & Sons
  124. ^ The long, difficult road to Pentax full-frame The long, difficult road to Pentax full-frame, Digital Photography Review
  125. ^ British Journal of Photography, Issues 7410–7422, 2003, p. 2
  126. ^ Canon EOS-1Ds, 11 megapixel full-frame CMOS, Digital Photography Review
  127. ^ Amit Dhir (2004), The Digital Consumer Technology Handbook: A Comprehensive Guide to Devices, Standards, Future Directions, and Programmable Logic Solutions, p. 263, Elsevier
  128. ^ a b David Buckingham, Rebekah Willett, Maria Pini (2011), Home Truths? Video Production and Domestic Life, p. 9, University of Michigan Press
  129. ^ «Separate camera and recorder; First VHS-C camcorder». 2007-09-14. Retrieved 2007-09-14.
  130. ^ «Evolution of the Camera phone: From Sharp J-SH04 to Nokia 808 Pureview». Hoista.net. 2012-02-28. Retrieved 2013-06-21.
  131. ^ Berga, Luis (2018). RCC Dams – Roller Compacted Concrete Dams: Proceedings of the IV International Symposium on Roller Compacted Concrete Dams, Madrid, Spain, 17-19 November 2003- 2 Vol set. ISBN 978-1-351-41978-9. OCLC 1147834277.
  132. ^ Nakane, T. (1992-09-05). «NSP kiln. NSP kiln». Kagaku Kogaku (Chemical Engineering); (Japan) (in Japanese). 56:9.
  133. ^ Nishizawa, Jun-ichi & Suto, Ken (2004). «Terahertz wave generation and light amplification using Raman effect». In Bhat, K. N. & DasGupta, Amitava (eds.). Physics of semiconductor devices. New Delhi, India: Narosa Publishing House. p. 27. ISBN 978-81-7319-567-9.
  134. ^ «Optical Fiber». Sendai New. Archived from the original on 2009-09-29. Retrieved 2009-04-05.
  135. ^ «New Medal Honors Japanese Microelectrics Industry Leader». Institute of Electrical and Electronics Engineers.
  136. ^ a b c d Semiconductor Technologies, p. 338, Ohmsha, 1982
  137. ^ a b Johnstone, Bob (2000). We were burning: Japanese entrepreneurs and the forging of the electronic age. New York: BasicBooks. ISBN 9780465091188.
  138. ^ S. Millman (1983), A History of Engineering and Science in the Bell System, p. 10 Archived 26 October 2017 at the Wayback Machine, AT&T Bell Laboratories
  139. ^ Kurita, Nakano, Lee. «Why and how I created emoji». Ignition. Archived from the original on 2016-06-10. Retrieved 2016-07-01.{{cite web}}: CS1 maint: multiple names: authors list (link)
  140. ^ Information Processing Society of Japan – Parametron
  141. ^ Rojas, Rául; Hashagen, Ulf (2002). The First Computers: History and Architectures. Cambridge, Massachusetts: MIT Press. p. 429. ISBN 978-0-262-68137-7.
  142. ^ Takahashi, S. (1959-03-01). «Development of Japanese Digital Computers». The Computer Journal. 2 (3): 122–129. doi:10.1093/comjnl/2.3.122.
  143. ^ Martin Fransman (1993), The Market and Beyond: Cooperation and Competition in Information Technology, p. 19, Cambridge University Press
  144. ^ a b c Early Computers, Information Processing Society of Japan
  145. ^ 【Electrotechnical Laboratory】 ETL Mark III Transistor-Based Computer, Information Processing Society of Japan
  146. ^ 【Electrotechnical Laboratory】 ETL Mark IV Transistor-Based Computer, Information Processing Society of Japan
  147. ^ 【Electrotechnical Laboratory】 ETL Mark IV A Transistor-Based Computer, Information Processing Society of Japan
  148. ^ a b c Hitachi and Japanese National Railways MARS-1, Information Processing Society of Japan
  149. ^ 【Kyoto University,Toshiba】 KT-Pilot, Information Processing Society of Japan
  150. ^ Office Computers: Brief History, Information Processing Society of Japan
  151. ^ 【NEC】 NEAC-1240, Information Processing Society of Japan
  152. ^ a b c Shimazu, Takehito (1994). «The History of Electronic and Computer Music in Japan: Significant Composers and Their Works». Leonardo Music Journal. 4: 102–106 [104]. doi:10.2307/1513190. JSTOR 1513190. S2CID 193084745. Retrieved 2012-07-09.
  153. ^ Running Cola is Africa (retrieved 20 April 2012)
  154. ^ Computer Technique Group (retrieved 20 April 2012)
  155. ^ a b c d e f g Federico Faggin, The Making of the First Microprocessor, IEEE Solid-State Circuits Magazine, Winter 2009, IEEE Xplore
  156. ^ Agreement between Intel & NCM
  157. ^ a b «NEC 751 (uCOM-4)». The Antique Chip Collector’s Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  158. ^ a b c 1970年代 マイコンの開発と発展 ~集積回路, Semiconductor History Museum of Japan
  159. ^ Jeffrey A. Hart & Sangbae Kim (2001), The Defense of Intellectual Property Rights in the Global Information Order Archived 16 April 2017 at the Wayback Machine, International Studies Association, Chicago
  160. ^ Ogdin, Jerry (January 1975). «Microprocessor scorecard». Euromicro Newsletter. 1 (2): 43–77. doi:10.1016/0303-1268(75)90008-5.
  161. ^ a b Integrated Circuits: 1970s, Semiconductor History Museum of Japan
  162. ^ a b c Shima Masatoshi, Information Processing Society of Japan
  163. ^ a b c d e 【Sord】 SMP80/x series, Information Processing Society of Japan
  164. ^ US patent 4,010,449, Federico Faggin, Masatoshi Shima, Stanley Mazor, «MOS computer employing a plurality of separate chips», issued 1 March 1977
  165. ^ a b «History». PFU. Retrieved 2010-10-05.
  166. ^ a b PANAFACOM Lkit-16, Information Processing Society of Japan
  167. ^ «16-bit Microprocessors». CPU Museum. Retrieved 2010-10-05.
  168. ^ «Hitachi Releases the SH-4 SH7750 Series, Offering Industry’s Highest Performance of 360 MIPS for an Embedded RISC Processor, as Top-End Series in SuperH Family».
  169. ^ a b Nathan Willis (2015-06-10). «Resurrecting the SuperH architecture». LWN.net.
  170. ^ a b Michael Katz, Robert Levering, Milton Moskowitz (1985), Computer Entrepreneur, p. 469, Penguin Group
  171. ^ Michael Katz, Robert Levering, Milton Moskowitz (1985), Computer Entrepreneur, p. 463, Penguin Group
  172. ^ 【Sord】 M200 Smart Home Computer Series, Information Processing Society of Japan
  173. ^ a b «Video interview with Yash Terakura | Scene World – The C64 NTSC/PAL Disk Magazine». Sceneworld.org. Retrieved 2015-12-30.
  174. ^ The Game Machines: The Ultimax/Max Machine, 64GS, 64CGS
  175. ^ Classic Videogame Hardware Genius Guide, p. 230, Imagine Publishing
  176. ^ «Computing Japan». Computing Japan. 54–59: 18. 1999. Retrieved 2012-02-06. …its venerable PC 9800 series, which has sold more than 18 million units over the years, and is the reason why NEC has been the number one PC vendor in Japan for as long as anyone can remember.
  177. ^ «Brutal Deluxe Software».
  178. ^ «Projects and Articles – Retrieving Japanese Apple II programs». Archived from the original on 2016-10-05. Retrieved 2017-05-23.
  179. ^ «LINKS-1 Computer Graphics System-Computer Museum».
  180. ^ Micro Computer Basic Master MB-6880 Music method[permanent dead link]Kunihiko (圀彦), Nagai (長井); Teruhiro (輝洋), Takezawa (竹澤); Kazuma (一馬), Yoshimura (吉村); KaTsutoshi (活利), Tajima (田島) (1979-04-26). «Hitachi Hyoron April 1979 Special Features:A micro-computer, the application method». digital.hitachihyoron. HITACHI. Archived from the original on 2015-05-08. Retrieved 2013-08-26.
  181. ^ Today’s PC is yesterday’s graphics workstation, The Inquirer
  182. ^ «uPD7220/uPD7220A User Manual, December 1985» (PDF). Archived from the original (PDF) on 2012-06-16. Retrieved 2017-05-24.
  183. ^ Norman Einspruch (2012), VLSI Handbook, p. 728, Academic Press
  184. ^ a b Jon Peddie, The History of Visual Magic in Computers: How Beautiful Images are Made in CAD, 3D, VR and AR, pp. 225–226, Springer Science+Business Media
  185. ^ Tetsuji Oguchi; Misao Higuchi; Takashi Uno; Michiori Kamaya; Munekazu Suzuki (February 1981). «A Single-chip Graphic Display Controller» (PDF). International Solid State Circuit Conference: 170–171. doi:10.1109/ISSCC.1981.1156160. S2CID 20765458.
  186. ^ a b F. Robert A. Hopgood; Roger J. Hubbold; David A. Duce, eds. (1986). Advances in Computer Graphics II. Springer. p. 169. ISBN 9783540169109. Perhaps the best known one is the NEC 7220.
  187. ^ David Needle (1983-03-21). «NEC’s 7220 GDC chip allows high-resolution color graphics». Info World. pp. 31–34. Retrieved 2013-07-29.
  188. ^ Jon Peddie, The History of Visual Magic in Computers: How Beautiful Images are Made in CAD, 3D, VR and AR, p. 226, Springer Science+Business Media
  189. ^ PC Mag,
    October 14, 1986, p. 54
  190. ^ FR2487094A1 patent: Notebook computer system small
  191. ^ a b c d 【Shinshu Seiki / Suwa Seikosha】 HC-20, Information Processing Society of Japan
  192. ^ Epson HX-20, Old Computers
  193. ^ a b c d Michael R. Peres, The Focal Encyclopedia of Photography, p. 306, Taylor & Francis
  194. ^ «Epson SX-20 Promotional Brochure» (PDF). Epson America, Inc. 1987. Retrieved 2008-11-02.
  195. ^ Sharp PC-5000, Old Computers
  196. ^ a b c Japanese PCs (1984) (13:13), Computer Chronicles
  197. ^ Bob Armstrong, http://cosy.com/language/cosyhard/cosyhard.htm
  198. ^ Nicolae Sfetc, The Music Sound, p. 1525
  199. ^ a b c d e Russ, Martin (2012). Sound Synthesis and Sampling. CRC Press. p. 192. ISBN 978-1136122149. Retrieved 2017-04-26.
  200. ^ a b Martin Russ, Sound Synthesis and Sampling, p. 85, CRC Press
  201. ^ a b c d e f g h i David Ellis, Yamaha CX5M, Electronics & Music Maker, October 1984
  202. ^ a b c d Yamaha CX5M Music Computer Flyer, Yamaha
  203. ^ a b Helen Casabona, David Frederick, Advanced MIDI Applications, p. 15, Alfred Music
  204. ^ a b Happy birthday MIDI 1.0: Slave to the rhythm, The Register, August 2013
  205. ^ a b Yamaha CX5, Old Computers
  206. ^ a b c d YIS-503 / Diabolik, Old Computers
  207. ^ a b Yamaha SFG-01, MSX Resource Center
  208. ^ «Yamaha CX5M Music Computer». SonicState.com.
  209. ^ a b c d Yamaha SFG, MSX Resource Center
  210. ^ Mages; et al. (May 2010). «Yamaha FB-01».
  211. ^ Yamaha FB-01, Vintage Synth Explorer
  212. ^ Roland CMU-800, Vintage Synth Explorer
  213. ^ a b Happy birthday MIDI 1.0: Slave to the rhythm, The Register
  214. ^ a b MIDI INTERFACES FOR THE IBM PC, Electronic Musician, September 1990
  215. ^ Programming the MPU-401 in UART mode
  216. ^ MIDI PROCESSING UNIT MPU-401 TECHNICAL REFERENCE MANUAL, Roland Corporation
  217. ^ Peter Manning (2013), Electronic and Computer Music, p. 319, Oxford University Press
  218. ^ MT-32, Synthmania
  219. ^ Janssen, Cory. «What is a Universal Serial Bus (USB)?». Techopedia. Retrieved 2014-02-12.
  220. ^ Aperture grille details
  221. ^ Popular Science, April 1970, p. 26
  222. ^ US3794990A patent: System for driving liquid crystal display device
  223. ^ US3781862A patent: Display device for electronic calculator
  224. ^ JPS5327390A patent: Liquid crystal display device
  225. ^ JPS5437697A patent: Liquid crystal display unit of matrix type
  226. ^ JPS51139582A patent: Liquid crystal display units
  227. ^ JPS5279948A patent: Liquid crystal color display device
  228. ^ a b c Spin, Jul 1985, p. 55
  229. ^ The world’s first television-watch, with an active-matrix LCD, Epson
  230. ^ «Frank’s Handheld-TVs: Part 1».
  231. ^ A HISTORY OF CREATING INSPIRATIONAL TECHNOLOGY, Epson
  232. ^ a b Popular Science, May 1984, p. 150
  233. ^ a b Technology: Japan’s future TV lacks definition, New Scientist, November 1991
  234. ^ Hart, Jeffrey A. (1998). «Digital Television in Europe and Japan». Prometheus. 16 (2): 217–237. doi:10.1080/08109029808629277.
  235. ^ US3881311A patent: Driving arrangement for passive time indicating devices
  236. ^ Hirohisa Kawamoto (2013), The history of liquid-crystal display and its industry, HISTory of ELectro-technology CONference (HISTELCON), 2012 Third IEEE, Institute of Electrical and Electronics Engineers, DOI 10.1109/HISTELCON.2012.6487587
  237. ^ Fujitsu Develops Breakthrough Technology for High-Resolution PDPs Suited for High-Definition TVs, Fujitsu, 25 August 1998
  238. ^ a b Find out what is an LCD Projector, how does it benefit you, and the difference between LCD and 3LCD here, Epson
  239. ^ http://focus.ti.com/download/dlpdmd/166_History_Electronic_Proj_Tech_Hornbeck.pdf | Hornbeck, TI: From cathode rays to digital micromirrors: A history of electronic projection display technology
  240. ^ Product & Technology Milestones: Television, Sony
  241. ^ «Neodymium magnets». Borates. Archived from the original on 2016-07-29. Retrieved 2016-07-01.
  242. ^ «What is a Strong Magnet?». The Magnetic Matters Blog. Adams Magnetic Products. 2012-10-05. Retrieved 2012-10-12.
  243. ^ Patrick Mccluskey, F.; Podlesak, Thomas; Grzybowski, Richard (1996-12-13). High Temperature Electronics. ISBN 9780849396236.
  244. ^ Nishizawa, Jun-Ichi (1982). «Junction Field-Effect Devices». Semiconductor Devices for Power Conditioning. pp. 241–272. doi:10.1007/978-1-4684-7263-9_11. ISBN 978-1-4684-7265-3.
  245. ^ a b c d Jun-ichi Nishizawa: Engineer, Sophia University Special Professor Archived 21 July 2018 at the Wayback Machine (interview), Japan Quality Review, 2011
  246. ^ a Drummer, G.W (1997-01-01). Electronic Inventions and Discoveries: Electronics from its earliest beginnings to the present day, Fourth Edition. ISBN 9780750304931.
  247. ^ Dummer, G. W. A. (2013-10-22). Electronic Inventions and Discoveries: Electronics from its Earliest Beginnings to the Present Day. ISBN 9781483145211.
  248. ^ Nishizawa, Jun-ichi (December 2009). «Extension of frequencies from maser to laser». Proceedings of the Japan Academy. Series B, Physical and Biological Sciences. 85 (10): 454–465. Bibcode:2009PJAB…85..454N. doi:10.2183/pjab.85.454. PMC 3621550. PMID 20009378.
  249. ^ «Shuji Nakamura». University of California, Santa Barbara. Archived from the original on 2010-07-15. Retrieved 2008-07-31.
  250. ^ «The Nobel Prize in Physics 2014». Nobel Foundation. Retrieved 2014-10-07.
  251. ^ The implementation of a personal computer-based digital facsimile information distribution system – Edward C. Chung, Ohio University, November 1991, p. 2
  252. ^ Fax: The Principles and Practice of Facsimile Communication, Daniel M. Costigan, Chilton Book Company, 1971, pp. 112–114, 213, 239
  253. ^ «A Brief History of the ATM». The Atlantic. 2015-03-26. Retrieved 2015-04-26.
  254. ^ «How the ATM Revolutionized the Banking Business». Bloomberg L.P. 2013-03-27.
  255. ^ «ATMIA 50th Anniversary Factsheet» (PDF). atmia.com. ATM Industry Association. October 2015. Retrieved 2016-06-29.
  256. ^ ‘Fast Machine With a Buck’,»Pacific Star and Stripes», 7 July 1966
  257. ^ ‘Instant Cash with a Credit Card’, «ABA Banking Journal», January 1967
  258. ^ Demaria, Rusel; Johnny L. Wilson (2002). High Score! The Illustrated History of Video games. McGraw-Hill. p. 30. ISBN 978-0-07-222428-3.
  259. ^ «Die Geschichte der Handhelds, Teil 1 von 1972 – 1989». GIGA. 2013-08-26.
  260. ^ «Waco Tic-Tac-Toe». handheldmuseum.com.
  261. ^ Dillon, Roberto (2011-04-12). The Golden Age of Video Games. ISBN 9781439873236.
  262. ^ Eastin, Matthew S. (2010-07-31). Handbook of Research on Digital Media and Advertising: User Generated … ISBN 9781605667935.
  263. ^ Sfetcu, Nicolae (2014-05-04). «Game Preview». google.com.
  264. ^ Kasco and the Electro-Mechanical Golden Age (Interview), Classic Videogame Station ODYSSEY, 2001
  265. ^ Video Game Firsts, The Golden Age Arcade Historian (22 November 2013)
  266. ^ Basketball Flyer (1974), Arcade Flyer Museum
  267. ^ Bill Loguidice & Matt Barton (2009), Vintage games: an insider look at the history of Grand Theft Auto, Super Mario, and the most influential games of all time, p. 197, Focal Press, ISBN 0-240-81146-1
  268. ^ Mark J. P. Wolf (2012-06-15). Before the Crash: Early Video Game History. Wayne State University Press. p. 173. ISBN 978-0814337226. Retrieved 2016-07-08.
  269. ^ «GitHub – mamedev/mame: MAME». GitHub. 2019-01-20.
  270. ^ http://www.vasulka.org/archive/Writings/VideogameImpact.pdf#page=25[bare URL PDF]
  271. ^ a b «GlitterBerri’s Game Translations » Making the Famicom a Reality». Archived from the original on 2012-05-05. Retrieved 2017-05-28.
  272. ^ «GitHub – mamedev/mame: MAME». GitHub. 2019-01-20.
  273. ^ «MAME | src/mame/drivers/galdrvr.c». Archived from the original on 2014-01-03.
  274. ^ Montfort, Nick; Bogost, Ian (2009-01-09). Racing the Beam: The Atari Video Computer System. MIT Press. ISBN 9780262261524 – via Google Books.
  275. ^ a b c d e f g Kirn, Peter (2011). Keyboard Presents the Evolution of Electronic Dance Music. Backbeat Books. ISBN 978-1-61713-446-3.
  276. ^ a b 808 (documentary film)
  277. ^ a b «Nine Great Tracks That Use the Roland TR-909». Complex Networks.
  278. ^ a b «9 of the best 909 tracks using the TR-909».
  279. ^ Vine, Richard (2011-06-15), «Tadao Kikumoto Invents the Roland TB-303», The Guardian, London, no. 14 June, retrieved 2011-12-23
  280. ^ a b c Reid, Gordon (2004), «The History of Roland Part 1: 1930–1978», Sound on Sound (November), retrieved 2011-06-19
  281. ^ Matt Dean (2011), The Drum: A History, p. 390, Scarecrow Press
  282. ^ a b c d e f g «The 14 drum machines that shaped modern music». 2016-09-22.
  283. ^ a b c «Donca-Matic (1963)». Korg Museum. Korg. Archived from the original on 2005-09-03.
  284. ^ «Automatic rhythm instrument».
  285. ^ a b Russell Hartenberger (2016), The Cambridge Companion to Percussion, p. 84, Cambridge University Press
  286. ^ «Korg Mini Pops». Archived from the original on 2011-09-27. Retrieved 2017-06-02.
  287. ^ Russell Hartenberger (2016), The Cambridge Companion to Percussion, pp. 84–85, Cambridge University Press
  288. ^ ACE TONE: RHYTHM ACE – FR-1 & FR-2L INFO PAGE, Dubsounds
  289. ^ Rick Moody, On Celestial Music: And Other Adventures in Listening, p. 202, Hachette
  290. ^ Kris Needs, Suicide – A New York Story, Pop Matters
  291. ^ a b Mike Collins (2014), In the Box Music Production: Advanced Tools and Techniques for Pro Tools, p. 320, CRC Press
  292. ^ Martin Russ (2012), Sound Synthesis and Sampling, p. 83, CRC Press
  293. ^ a b Harry Shapiro, Michael Heatley, Roger Mayer, Jimi Hendrix Gear, p. 120, Voyageur Press
  294. ^ a b Molenda, Mike; Pau, Les (2007). The Guitar Player Book: 40 Years of Interviews, Gear, and Lessons from the World’s Most Celebrated Guitar Magazine. Hal Leonard. p. 222. ISBN 9780879307820.
  295. ^ «Boss CE-1 Chorus Ensemble». 2020-03-02.
  296. ^ a b Tribute: Ikutaro Kakehashi and Roland’s Impact on Music, Reverb.com
  297. ^ a b c Echoes in Time: The History of BOSS Delay Pedals, Boss Corporation, November 2015
  298. ^ Yamaha GX-1, Vintage Synth Explorer
  299. ^ FutureMusic, issues 131–134, 2003, p. 55
  300. ^ Jenkins, Mark (2009). Analog Synthesizers: Understanding, Performing, Buying—From the Legacy of Moog to Software Synthesis. CRC Press. p. 89. ISBN 978-1-136-12278-1.
  301. ^ a b A TALE OF TWO STRING SYNTHS, Sound on Sound, July 2002
  302. ^ a b «[Chapter 2] FM Tone Generators and the Dawn of Home Music Production». Yamaha Synth 40th Anniversary – History. Yamaha Corporation. 2014. Archived from the original on 2014-10-23.
  303. ^ a b Holmes, Thom (2008). «Early Computer Music». Electronic and experimental music: technology, music, and culture (3rd ed.). Taylor & Francis. p. 257. ISBN 978-0415957816. Retrieved 2011-06-04.
  304. ^ Holmes, Thom (2008). «Early Computer Music». Electronic and experimental music: technology, music, and culture (3rd ed.). Taylor & Francis. pp. 257–8. ISBN 978-0-415-95781-6. Retrieved 2011-06-04.
  305. ^ U.S. Patent 4,018,121
  306. ^ a b Mark Vail, The Synthesizer: A Comprehensive Guide to Understanding, Programming, Playing, and Recording the Ultimate Electronic Music Instrument, p. 277, Oxford University Press
  307. ^ Impact of MIDI on electroacoustic art music, Issue 102, p. 26, Stanford University
  308. ^ Curtis Roads (1996). The computer music tutorial. MIT Press. p. 226. ISBN 978-0-262-68082-0. Retrieved 2011-06-05.
  309. ^ Dean, R. T. (2009). The Oxford handbook of computer music. Oxford University Press. p. 1. ISBN 978-0-19-533161-5.
  310. ^ Shepard, Brian K. (2013). Refining Sound: A Practical Guide to Synthesis and Synthesizers. Oxford University Press. ISBN 9780199376681. The first digital synthesizer to make it into the studios of everyone else, the Yamaha DX7, became one of the most commercially successful synthesizers of all time.
  311. ^ Hey, what’s that sound: Casiotone, The Guardian
  312. ^ a b c d e Hicks, Dan (January 2010). «Exclusive Interview with RALPH DYCK, Godfather of the MC-8!».
  313. ^ a b c d e f g h i Chris Carter, ROLAND MC8 MICROCOMPOSER, Sound on Sound, Vol.12, No.5, March 1997
  314. ^ a b MC-8 MicroComposer Instruction Manual. 1979.
  315. ^ Russ, Martin (2008). Sound Synthesis and Sampling. Focal Press. p. 346. ISBN 978-0240521053. Retrieved 2011-06-21.
  316. ^ Paul Théberge (1997), Any Sound You Can Imagine: Making Music/Consuming Technology, p. 223, Wesleyan University Press
  317. ^ Herbert A. Deutsch (1985), Synthesis: an introduction to the history, theory & practice of electronic music, p. 96, Alfred Music
  318. ^ a b Gordon Reid (November 2004). «The History of Roland Part 1: 1930–1978». Sound on Sound. Retrieved 2011-06-19.
  319. ^ Russ, Martin (2008). Sound Synthesis and Sampling. Focal Press. p. 346. ISBN 978-0-240-52105-3. Retrieved 2011-06-21.
  320. ^ a b c Tanaka, Yuji (2014-11-11). «Yellow Magic Orchestra: The Pre-MIDI Technology Behind Their Anthems». Red Bull Music Academy.
  321. ^ Giorgio Moroder Gear Guide, Dolphin Music
  322. ^ Ryuichi Sakamoto – Thousand Knives Of (CD) at Discogs
  323. ^ Dr Ron Moy, Kate Bush and Hounds of Love, p. 77, Ashgate Publishing
  324. ^ The 30 Top Instruments and Innovations of Roland’s Ikutaro Kakehashi (1930–2017), Electronic Musician
  325. ^ Mark Prendergast (January 1995). «Tangerine Dream: Changing Use Of Technology, Part 2: 1977–1994». Sound on Sound. Retrieved 2016-03-28.
  326. ^ Yellow Magic Orchestra – Yellow Magic Orchestra at Discogs
  327. ^ Sound International, Issues 33–40. Sound International. 1981. p. 147. Retrieved 2011-06-21.
  328. ^ Wolbe, Trent (2013-01-30). «How the 808 drum machine got its cymbal, and other tales from music’s geeky underbelly». The Verge. Retrieved 2017-01-16.
  329. ^ Percussion Technology, Part II, SBO Magazine, December 2001
  330. ^ «Ace Tone Rhythm Producer FR-15». ESTECHO.com. 2016-12-17. – Sakata Shokai/Ace Tone Rhythm Producer, a successor of Rhythm Ace after the reconstruction of Ace Tone brand in 1972, provided feature to modify the pre-programmed rhythms.
  331. ^ a b Russell Hartenberger (2016), The Cambridge Companion to Percussion, p. 85, Cambridge University Press
  332. ^ «Roland CR-78 | Vintage Synth Explorer».
  333. ^ Contemporary Keyboard, Volume 7, Issues 1–6, 1981
  334. ^ Reid, Gordon (February 2002). «Synth Secrets: Practical Bass Drum Synthesis». Sound on Sound. Archived from the original on 2004-02-15. Retrieved 2015-11-25.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  335. ^ a b Leight, Elias (2016-12-06). «8 Ways the 808 Drum Machine Changed Pop Music». Rolling Stone. Retrieved 2016-01-16.
  336. ^ Spin, February 1990, p. 24
  337. ^ Hamilton, Jack (2016-12-16). «This New Doc About the Invention That Changed Music Is a Must-Watch for Music Nerds». Slate Magazine.
  338. ^ Wells, Peter (2004), A Beginner’s Guide to Digital Video, AVA Books, p. 18, ISBN 978-2-88479-037-6, retrieved 2011-05-20
  339. ^ «Firstman SQ-01 Sequence Synthesizer from Multivox» (advertisement). Contemporary Keyboard. Vol. 7, no. June 1981 – November 1981. p. 23.
  340. ^ «Multivox Firstman SQ-01 Sequencer». Keyboard Report. Contemporary Keyboard. Vol. 7, no. October 1981. 1981. pp. 82, 88.Keyboard Report, Oct. ’81«, according to the «Vol.9, 1983». 1983. )
  341. ^ «Firstman International». SYNRISE (in German). Archived from the original on 2003-04-20.
  342. ^ Mark Jenkins (2009), Analog Synthesizers, pp. 107–108, CRC Press
  343. ^ Vine, Richard (2011-06-15). «Tadao Kikumoto invents the Roland TB-303». The Guardian. Retrieved 2011-07-09.
  344. ^ db: The Sound Engineering Magazine, July 1972, p. 32
  345. ^ Kakehashi, Ikutarō; Olsen, Rober (2002). I Believe in Music: Life Experiences and Thoughts on the Future of Electronic Music by the Founder of the Roland Corporation. Hal Leonard Corporation. p. 197. ISBN 978-0-634-03783-2.
  346. ^ a b Chadabe, Joel (2000-05-01). «Part IV: The Seeds of the Future». Electronic Musician. XVI (5). Archived from the original on 2012-09-28. Retrieved 2017-05-23.
  347. ^ Holmes, Thom. Electronic and Experimental Music: Pioneers in Technology and Composition. New York: Routledge, 2003
  348. ^ a b Manning, Peter. Electronic and Computer Music. 1985. Oxford: Oxford University Press, 1994. Print.
  349. ^ The life and times of Ikutaro Kakehashi, the Roland pioneer modern music owes everything to, Fact
  350. ^ «Technical GRAMMY Award: Ikutaro Kakehashi And Dave Smith». 2013-01-29.
  351. ^ «Ikutaro Kakehashi, Dave Smith: Technical GRAMMY Award Acceptance». 2013-02-09.
  352. ^ Rockin’f, March 1982, pp. 140–141
  353. ^ A Beginner’s Guide To Yellow Magic Orchestra, The Electricity Club
  354. ^ a b Martin Russ (2004). Sound synthesis and sampling. p. 66. ISBN 9780240516929.
  355. ^ a b Butler, Mark Jonathan. «Unlocking the Groove: Rhythm, Meter, and Musical Design in Electronic Dance Music». Indiana University Press, 2006. ISBN 0-2533-4662-2. p. 64
  356. ^ «Roland – Company – History – History».
  357. ^ Billboard. Vol. 95, no. 5. 1983-02-05. p. 41.
  358. ^ Roland Corp (2014-01-20). «How Roland Came Up With 909 Sounds». Roland. Retrieved 2014-01-20.
  359. ^ The Mr. Fingers ‘Can You Feel It’ Bass Line, Synthtopia
  360. ^ Nine Great Tracks That Use the Roland TR-909, Complex
  361. ^ «The Best USB MIDI Drum Pads for Beginners – How to choose a USB MIDI Drum Pad Controller». Archived from the original on 2017-11-14. Retrieved 2017-06-02..
  362. ^ Roland MC-202 MicroComposer, Electronic Musician, November 2001
  363. ^ a b Roland D50, Sound on Sound, July 1997
  364. ^ Roland D50,Score of 4.58 out of 5 by 2936 users, May 2017
  365. ^ a b G. W. A. Dummer (1997), Electronic Inventions and Discoveries, p. 164, Institute of Physics
  366. ^ Valerie-Anne Giscard d’Estaing (1990), The Book of Inventions and Discoveries, p. 124, Queen Anne Press
  367. ^ a b Lazarus, David (1995-04-10). «‘Japan’s Edison’ Is Country’s Gadget King : Japanese Inventor Holds Record for Patent». The New York Times. Retrieved 2010-12-21.
  368. ^ Yoshiro Nakamatsu – The Thomas Edison of Japan, Stellarix Consultancy Services, 2015
  369. ^ Magnetic record sheet, Patent US3131937
  370. ^ Graphic Arts Japan, Volume 2 (1960), pp. 20–22
  371. ^ Barron, James (1990-11-11). «What a Stroke of … Um, Ingenuity, Anyhow». The New York Times. Retrieved 2010-05-03.
  372. ^ Spy, December 1991, p. 49
  373. ^ Lidz, Franz (December 2012). «Dr. NakaMats, the Man With 3300 Patents to His Name». Smithsonian Magazine. Retrieved 2014-10-15.
  374. ^ Hornyak, Tim (January 2002). «Dr. NakaMats: Japan’s Self-Proclaimed Savior». Japan Inc. Retrieved 2007-10-13.
  375. ^ SONY Micro Floppydisk Drive – Model OA-D30V
  376. ^ Toshiba MK1122FC, Information Processing Society of Japan
  377. ^ Toscal BC-1411 calculator, Science Museum, London
  378. ^ a b Toshiba «Toscal» BC-1411 Desktop Calculator
  379. ^ Advances in Computer Graphics II, p. 172, Springer Science+Business Media
  380. ^ Videodisc Update, Volumes 1–3, p. 13, 1982
  381. ^ Fulford, Benjamin (2002-06-24). «Unsung hero». Forbes. Retrieved 2008-03-18.
  382. ^ US 4531203 Fujio Masuoka
  383. ^ Shibasaki, T.; Hayashi, M. (September 1991). «Top-blown injection smelting and converting: The Mitsubishi process». JOM. 43 (9): 20–26. Bibcode:1991JOM….43i..20S. doi:10.1007/BF03222230. S2CID 138103985.
  384. ^ 40 years since Epson’s first Electronic Printer, Digital Photographer
  385. ^ About Epson, Epson
  386. ^ a b «Company Profile» (PDF). Sato Worldwide. Retrieved 2016-03-03.
  387. ^ Corporate Profile, SATO Group
  388. ^ «[PDF] Automatic method for fabricating a threedimensional plastic model – Free Download PDF». nanopdf.com. Retrieved 2020-12-29.
  389. ^ «Achievement Award 2014». ieice.org. Retrieved 2020-12-29.
  390. ^ «Hydro Printing and Dipping kits in Australia – Watertransferprinting». 2020-10-29. Archived from the original on 2020-10-29. Retrieved 2020-12-29.
  391. ^ Denki-Seiko [Electric Furnace Steel]. 11 (12): 643–656. 1935. doi:10.4262/denkiseiko.11.643 //doi.org/10.4262%2Fdenkiseiko.11.643.
  392. ^ Stephens, C.E. (2001). «Engineering time: Inventing the quartz wristwatch». Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218). pp. 2–3. doi:10.1109/freq.2001.956151. ISBN 0-7803-7028-7. S2CID 110696626.
  393. ^ (PDF) https://global.epson.com/company/corporate_history/milestone_products/pdf/35_spring-drive.pdf.
  394. ^ SMPTE Journal: Publication of the Society of Motion Picture and Television Engineers, Volume 96, Issues 1–6; Volume 96, p. 256, Society of Motion Picture and Television Engineers
  395. ^ First USA-Japan Computer Conference Proceedings: October 3–5, 1972, Tokyo, Japan, p. 320, American Federation of Information Processing Societies
  396. ^ «The quest for home video: Video discs part 2».
  397. ^ H04N21/236 patent: Digital video-storage system
  398. ^ «Ukichiro Nakaya». Famous Scientists. Retrieved 2016-07-05.
  399. ^ «Ceramic Ball (OHTO Japan English Website)». ohto.co.jp. 2008. Archived from the original on 2012-03-18. Retrieved 2012-05-04.

This is the history of science and technology in modern Japan.

Science[edit]

[icon]

This section needs expansion. You can help by adding to it. (May 2017)

In the natural sciences, the number of Japanese winners of the Nobel Prize has been second only to the United States in the 21st century, for contributions made in the 20th century. On the list of countries by research and development spending, Japan is third on the list, behind the United States and China.

Chemistry[edit]

Frontier Molecular Orbital Theory

In 1952, Kenichi Fukui published a paper in the Journal of Chemical Physics titled «A molecular theory of reactivity in aromatic hydrocarbons.»[1] He later received the 1981 Nobel Prize in Chemistry for his investigations into the mechanisms of chemical reactions, with his prize-winning work focused on the role of frontier orbitals in chemical reactions, specifically that molecules share loosely bonded electrons which occupy the frontier orbitals, that is the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO).[2][3][4][5][6][7][8]

Chirally catalyzed hydrogenation

Ryōji Noyori was awarded the 2001 Nobel Prize in Chemistry for his «work on chirally catalyzed hydrogenation reactions»[9] in 1968.[10]

Proteins and enzymes

In the 1960s and 1970s, green fluorescent proteins (GFP), along with the separate luminescent protein aequorin (an enzyme that catalyzes the breakdown of luciferin, releasing light), was first purified from Aequorea victoria and its properties studied by Osamu Shimomura.[11] He was awarded the 2008 Nobel Prize in Chemistry «for the discovery and development of the green fluorescent protein, GFP».[12]

Koichi Tanaka was awarded the 2003 Nobel Prize in Chemistry for the development of soft laser desorption, «methods for identification and structure analyses of biological macromolecules» and for «soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules».[13] In 1987, he demonstrated that laser pulses could blast apart large protein molecules so that ions in gaseous form are produced.[14]

Conductive polymers

Hideki Shirakawa was awarded the 2000 Nobel Prize in Chemistry «for the discovery and development of conductive polymers».[15]

Mathematics[edit]

In the 1930s, while studying switching circuits, NEC engineer Akira Nakashima independently discovered Boolean algebra, which he was unaware of until 1938. In a series of papers published from 1934 to 1936, he formulated a two-valued Boolean algebra as a way to analyze and design circuits by algebraic means in terms of logic gates.[16][17]

Medicine[edit]

In a landmark series of experiments beginning in 1976, Susumu Tonegawa showed that genetic material can rearrange itself to form the vast array of available antibodies.[18] He later received the 1987 Nobel Prize in Physiology or Medicine «for his discovery of the genetic principle for generation of antibody diversity.»[19]

Physics[edit]

Particle physics

Hideki Yukawa predicted the existence of mesons in 1934, for which he later received the 1949 Nobel Prize in Physics.[20]
yes
Yoichiro Nambu was awarded the 2008 Nobel Prize in Physics for his 1960 discovery of the mechanism of spontaneous broken symmetry in subatomic physics, related at first to the strong interaction’s chiral symmetry (chiral symmetry breaking) and later to the electroweak interaction and Higgs mechanism.[21]

The bottom quark is a product in almost all top quark decays, and is a frequent decay product for the Higgs boson. The bottom quark was theorized in 1973 by physicists Makoto Kobayashi and Toshihide Maskawa to explain CP violation.[22] Toshihide Maskawa and Makoto Kobayashi’s 1973 article, «CP Violation in the Renormalizable Theory of Weak Interaction»,[22] is the fourth most cited high energy physics paper of all time as of 2010.[23] They discovered the origin of the explicit breaking of CP symmetry in the weak interactions. The Cabibbo–Kobayashi–Maskawa matrix, which defines the mixing parameters between quarks, was the result of this work. Kobayashi and Maskawa were awarded the 2008 Nobel Prize in Physics «for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature.»[24]

Quantum physics

Leo Esaki was awarded the 1973 Nobel Prize in Physics[25] for the discovery of electron tunneling (quantum tunnelling) in the 1950s.[26] The tunnel diode (Esaki diode) was invented in August 1957 by Leo Esaki, Yuriko Kurose and Takashi Suzuki when they were working at Tokyo Tsushin Kogyo, now Sony.[27][28][29][26]

Shin’ichirō Tomonaga was awarded the 1965 Nobel Prize in Physics for his «fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles».[30]

Astrophysics

Masatoshi Koshiba was awarded the 2002 Nobel Prize in Physics «for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos»[31] in the 1980s. He conducted pioneering work on solar neutrino detection, and Koshiba’s work also resulted in the first real-time observation of neutrinos from the SN 1987A supernova. These efforts marked the beginning of neutrino astronomy.[32]

Psychology[edit]

The Rashomon effect is where the same event is given contradictory interpretations by different individuals involved. The concept originates from Akira Kurosawa’s 1950 film Rashomon, where a murder is described in four mutually contradictory ways by its four witnesses.[33]

Technology in the Empire of Japan (1868–1945)[edit]

For the first twenty years in the Meiji era, patents and inventions failed to attract much public attention. From the time of the Russo-Japanese War, largely through the action of the body known as the Imperial Invention Association, invention has been encouraged by the Government. With the outbreak of the First World War, imported manufactured goods were cut off, as was the inflow of foreign technology, and, as a consequence, a number of new industries, especially in the heavy and chemical sectors, were set up. Existing firms also took advantage of the opportunity for technical development and thepenetration of new markets. Several such companies were able to overcome the difficulties posed by economic depression and severe international competition. In 1935, at a time Japan experienced state of the art modernization entitled Shōwa Modan, the country ranked only behind the United States and Germany in the number of patents granted.[34][35]

Agriculture[edit]

Vertical rice polishing machine

The rice polishing machines used today are based on the vertical power-driven the milling machine, which was invented by Riichi Satake (the founder of Satake Corporation 株式会社サタケ) in 1930. The condition of the rice after milling, the extent of the milling, and damage to the rice grains during the process affects every link in the production chain. Rice could now be polished more efficiently. The abrasive action of the vertical polishing machine reduced the number of broken grains and made polishing more even, making it possible to produce highly polished rice. Unlike the previous horizontal polishing machines, which are used for table rice, the vertical design used gravity to drop the rice through the center chamber, which was outfitted with a center grindstone coated with carborundum. Horizontal polishing machines have the rice grains rub each other, but the vertical Satake type polished the grain with the abrasive center roller to achieve a 40 percent polishing ration, removing 50 percent of the rice grain, revolutionizing the rice milling system and became the standard, resulting in more uniform, finely polished grains that didn’t chip or crack.[36][37]

Batteries[edit]

Dry cell

The world’s first dry-battery was invented during the Meiji Era. The inventor was Yai Sakizou [ja]. Unfortunately, the company Yai founded no longer exists.[38] An award was granted for a dry cell battery by Yai at the 1903 fifth National Industrial Exhibition ( 第5回内国勧業博覧会 ) in Osaka, Japan. It seems that his award was given in recognition of the fact that his battery was already being exported to foreign countries.[39]

Reactive lead oxides production method

In 1920, Genzo Shimadzu invents «reactive lead oxides production method». Genzo’s invention of the reactive lead powder manufacturing method in 1920 revolutionized the quality and cost of lead powder used in storage batteries. The manufactured lead powder was also used in anti-rust paints, which was even used on the Tokyo Skytree tower completed in 2012. For that invention, Genzo Jr. was selected as one of Japan’s ten greatest inventors. He directed the company’s efforts toward the development, independently, of a lead-powder production method, which was subsequently named the ‘Production Method for Positive Response Lead Powder.’ This was a simple and inexpensive method of industrial production, whereby a lump of lead was placed in a revolving iron drum while air was blown in. The ensuing oxidation of the lump of lead, and its breakdown into lead particles by the friction of the revolving drum, produced the positively charged lead powder. In addition to patenting various processes in Japan, Shimadzu registered patents in the major foreign countries. There were enquiries also concerning the implementation of patents for the Shimadzu production method in the US, Britain, Italy, Belgium, Sweden,Canada Australia and France, attesting to the strong international interest in this technology. At this point, however, Shimadzu became entangled in a patent dispute in the USA. In June 1932, the US Supreme Court pronounced its final verdict and established the patent rights for the Shimadzu technology. Following this victory, implementation of patent rights were finalized in the US, Britain, and France; that is, contracts were concluded successively in these countries. A contract for the acquisition by Ost Lurgi of the Shimadzu technology option was signed in Frankfurt am Main on 1 June 1926. Fritz Haber was also present at this meeting. The company, Ost Lurgi located in Berlin , was established in March 1926 as a joint venture of Mitsubishi, Metallgesellschaft and Degussa AG [de]. The initiator of the establishing Ost Lurgi was Fritz Haber, inventor of the Haber Bosch process, who visited Japan in 1924, he thought highly of the standard of Japanese technology and originated a number of proposals for technico-industrial cooperation between Germany and Japan. One of his idealistic proposals gave rise to the establishment contract of Ost Lurgi. The purpose of Ost Lurgi was to transfer Japanese technology to Germany, but negotiations were drawn out, since the parties could not agree on conditions.[40][41][42][35]

Telecommunications[edit]

Cathode ray tube (CRT)

In 1924, Kenjiro Takayanagi began a research program on electronic television. In 1925, he demonstrated a cathode ray tube (CRT) television with thermal electron emission.[43] In 1926, he demonstrated a CRT television with 40-line resolution,[44] the first working example of a fully electronic television receiver.[43] In 1927, he increased the television resolution to 100 lines, which was unrivaled until 1931.[45] In 1928, he was the first to transmit human faces in half-tones on television, influencing the later work of Vladimir K. Zworykin.[46]

TYK Wireless Telephone

In the era when there was only a Morse code wireless telegraph, the world’s first practical «wireless telephone» to send voices wirelessly was invented in 1912, and successfully completed the first telephone call test in Japan. This device was called the «TYK-type wireless telephone» and was the first wireless telephone to be put into practical use in the world, and in 1913 it was installed in Toba and Kamishima, etc. (A remote island about 14 km from Toba) in Mie Prefecture. After a successful call experiment, a public communication service using wireless telephones started in 1916, with more than 15,000 practical calls. Later, the TYK wireless telephone won a foreign patent and contributed to the introduction of Japanese technology overseas.[47] The commendation system of the Imperial Invention Association took effect through various expositions, exhibitions, prize contests and patent conventions. The first recipients were Uichi Torigata, Eitaro Yokoyama, and Sejiro Kitamura for the TYK wireless telephone.[48] on 16 December 1914, the world’s first public telephone service via a voice based wireless communications system got underway.[49]

Meteor burst communications

The first observation of interaction between meteors and radio propagation was reported by Hantaro Nagaoka in 1929.[50]

Yagi antenna

The Yagi-Uda antenna was invented in 1926 by Shintaro Uda of Tohoku Imperial University, Sendai, Japan, with the collaboration of Hidetsugu Yagi, also of Tohoku Imperial University. Yagi published the first English-language reference on the antenna in a 1928 survey article on short wave research in Japan and it came to be associated with his name. However, Yagi always acknowledged Uda’s principal contribution to the design, and the proper name for the antenna is, as above, the Yagi-Uda antenna (or array).[51]

NE-style phototelegraphy

Phototelegraphic equipment invented by Yasujiro Niwa that became the foundation of mechanical televisions and FAX machines in Japan. In November 1928, when Emperor Hirohito’s Imperial Accession Ceremony was held, newspaper companies that had mulled over ways to deliver papers with photos (The first photo-telegraph to be sent using a leased line) of the ceremony throughout the nation as quickly as possible employed this phototelegraphic equipment with great success. In general use, the NEC-style photo-telegraph was used to send information such as pictures and handwriting.[52]

Non-loaded Cable

The vital technology in Japan’s effort to build a strategic communications link between the home islands and Manchukuo. The importance of this technological invention was not limited to Manchuria, it was the technological equivalent in Japan’s new empire-building endeavor to the gutta-percha submarine cable in the creation of the British empire. In the meantime, NLC would be heralded as a quintessential «Japanese-style technology» and a milestone in modern Japan’s quest for technological autonomy. Even decades later, many in Japan were still convinced that «consistently in every step from invention to application, it was literally a domestically produced technology, worthy of international pride» and the development of NLC was «clearly the starting point of the leap forward of our telecommunications technology to the world’s top level». In 1936, the Japanese government adopted non-loaded cable for the new Japan–Manchukuo cable network as well as for the long-distance communications networks in Japan, thus establishing the supremacy of the new technology in Japan. In the same year, Shigeyoshi Matsumae (松前重義 1901–1991) was awarded the Asano Prize by Japan’s Association of Electrical Engineering for his ground-breaking contribution to the development of telecommunications technology. Named after one of Japan’s first electrical engineers, who oversaw the laying of the submarine cable to Taiwan, the prize of 1,000 yen further consolidated the reputation of NLC as well as that of its chief inventor. Later that year, Matsumae received his doctoral degree from Tōhoku Imperial University. the NLC technology was «the greatest invention in Japan’s telecommunications industry». Now recognized as Japan’s unique contribution to the field of telephone transmission.[53]

Electronics[edit]

Digital circuits

From 1934 to 1936, NEC engineer Akira Nakashima introduced switching circuit theory in a series of papers showing that two-valued Boolean algebra, which he discovered independently, can describe the operation of switching circuits. Nakashima’s switching circuit theory used digital electronics for Boolean algebraic operations.[54][55][16][17] Nakashima’s work was later cited and elaborated on in Claude Shannon’s seminal 1938 paper «A Symbolic Analysis of Relay and Switching Circuits».[16] Nakashima laid the foundations for digital system design with his switching circuit theory, using a form of Boolean algebra as a way to analyze and design circuits by algebraic means in terms of logic gates. His switching circuit theory provided the mathematical foundations and tools for digital system design in almost all areas of modern technology, and was the basis for digital electronics and computer theory.[17][55]

Nakashima’s work on switching circuit theory was further advanced by Claude Shannon in the United States during the late 1930s to 1940s,[17][55] and by Goto Mochinori in Japan during the 1940s.[56][57]

Screen grid valve

The first true screen-grid valve, with a screen grid designed for this purpose, was patented by Hiroshi Ando in 1919.[58]

Instruments[edit]

Electronic organ

Yamaha engineer Mr. Yamashita invented the Yamaha Magna Organ in 1935. It was an electrostatic reed organ, a multi-timbral keyboard instrument based on electrically blown free reeds with pickups.[59][60]

Lighting[edit]

Double-coil bulb

In 1921, Junichi Miura created the first double-coil bulb using a coiled coil tungsten filament while working for Hakunetsusha (a predecessor of Toshiba). At the time, machinery to mass-produce coiled coil filaments did not exist, however Hakunetsusha developed a method to mass-produce coiled coil filaments by 1936.[61]

Metallurgy/Materials[edit]

KS steel

Magnetic resistant steel that is three times more resistant than tungsten steel, invented by Kotaro Honda.[62] Honda’s discovery formed an important basis for Japan’s world-leading position in this field. Always been interested in magnetism, and after returning from studying at Göttingen University in Germany, he became a professor of Tohoku University in 1911. It was at Tohoku University that he invented cobalt steel. Later, he recalled the way he created this world-class material:

"The structure of the alloy (cobalt steel) was basically created in my brain. It was not created merely by chance or by accident. Japanese researchers would do well to learn from my example."

The cobalt steel was named ‘KS steel’ in Japan, since these were the initials of Sumitomo Kichizaemon, the family head of the Sumitomo zaibatsu, who had donated generous funds for this research. In 1918, Sumitomo Steel Casting succeeded in producing KS steel commercially. This steel, although very expensive, was extremely advanced, and was widely exported to Europe and the United States. In the same year, the Institute of Iron and Steel Research (later known as the Institute of Metal Research), the first public research institute for metals, was founded at Tohoku University, and it became the centre for metal research in Japan.[63]

MKM steel

MKM steel, an alloy containing nickel and aluminum, was developed in 1931 by the Japanese metallurgist Tokushichi Mishima.[64][65]

BaTiO3

The BaTiO3 (barium titanate) was discovered by T. Ogawa in 1943.[66]

Hematite Reduction Process

The Anshan Iron Works of the South Manchurian Railway company, having an abundant supply of precisely this sort of low-ferrous, non-magnetic, and high-silica iron ore deposits, was looking for a technical breakthrough to exploit these deposits. Umene Tsunesaburo (later the Chief Engineer and Director), a young engineer of the Anshan Works, graduated from the Department of Metallurgy at Kyoto University in 1911 and went to the Yawata Works. In 1916, when the Anshan Works was established as a large integrated mill, Umene made his way into Manchuria. The operation of the first blast furnace (67 000 ton per year) began in 1919. When the post-First World War depression hit the works, however, South Manchuria Railroad Company (SMRC) decided to postpone the opening of Anshan’s second blast furnace, and proposed construction of steel mills instead. In order to survive in the competitive and unstable iron market previously described, the Anshan Works hoped to reduce production costs by exploiting the abundant low ferrous iron ore deposits around the works. Umene was appointed as a researcher for this special project. In addition, in 1921 the works invited six American scholars and engineers, led by Dr W. R. Appleby, the Head of the Department of Metallurgy at Minnesota University, to research the feasibility of such a project in Manchuria. The team concluded that exploitation of the low quality deposits would not be commercial. Umene, however, did not give up on the calcinated magnetising method, which could achieve reduction and magnetising at the same time. He started his own research, using a theoretical scientific method. According to the chemical reaction formula, it was known that a non-magnetic iron ore chemically reacts and becomes magnetic if hermetically sealed and heated to over 1300 °C. This amount of energy consumption was not feasible, but Umene found that by putting a reducing agent in the ore, he could get the same chemical result at temperatures under 500 to 700 °C. He had only to decide the temperature and the amount of the reducing agent. Through careful experiments, he finally perfected the calcinating magnetisation method, and in June 1922, he took out a patent on the process. Because of this innovation, 90 per cent of even non-magnetic iron ore could be separated. Even more important, this innovation caused Japanese blast furnace engineers to recognise the importance of the preparation of iron ore. Kawasaki Steel’s Chiba Works, established in 1950 as the first large integrated greenfield works after the Second World War, and a model of efficient works, was the most important example. Asawa Saburo, who had been instructed by Umene at the Anshan Works, became Factory Manager of Kawasaki’s Chiba Works and refined the preparatory techniques. About this technological continuity and development, he wrote:

"We thoroughly developed the preparatory process of raw materials at the Chiba Works after the Second World War. In order to process the powder ore, we introduced the pelletizing method, which contributes to high performance ironmaking here. There can be no doubt that I owe the installment of this series of new equipment largely to Dr Umene .... Great technological achievement is never confined within itself, nor does it become just a thing of the past. I learned here that such great innovations (as Umene's) will be continuously succeeded by various applications."[67]

黒田式コークス炉

This furnace recovered by-products through a regenerative burning  apparatus, invented by Kuroda Taizo ( 黒田泰造 1883-1961) in 1918, engineer at the Yahata Works, it was a revolutionary energy-saving oven based on an energy-recycling system. The oven also improved by-product processing and increased coke processing yields. By 1933, the energy efficiency of the eighth coke oven at the Yahata Works was almost equal to that of the most advanced coke oven in Germany. The improvement in the quality of coke was directly reflected in the energy efficiency of iron and steelmaking. In addition, energy recycling techniques such as reuse of the gas generated in the coke oven and blast furnaces were exploited by the system. These efforts helped reduce the energy consumption of the works. The coal consumption per ton of steel production sharply dropped to 1.58 kg in 1933 from 3.7 kg in 1924. Eventually, Kuroda’s idea of energy saving and recycling became fundamental for Japanese steel engineers. In 1962, this technological heritage would produce one of the most important innovations, the Basic Oxygen Furnace Waste Gas Cooling and Clearing System, invented at Yawata Steel (a successor of the Yahata Works).[63][68]

Military[edit]

Aircraft Carrier

Hōshō was the world’s first purpose-built aircraft carrier to be completed. She was commissioned in 1922 for the Imperial Japanese Navy (IJN). Hōshō and her aircraft group participated in the January 28 Incident in 1932 and in the opening stages of the Second Sino-Japanese War in late 1937.[69]

Landing craft carrier

Shinshū Maru was the world’s first landing craft carrier ship to be designed as such, to carry and launch landing craft making it a pioneer of modern-day amphibious assault ships. These concepts pioneered by Shinshū Maru persist to the current day, in the U.S. Navy’s landing helicopter assault and landing helicopter dock amphibious assault ships.[70][71]

Dock landing ship

The predecessor of all modern dock landing ships is Shinshū Maru of the Imperial Japanese Army, which could launch her infantry landing craft using an internal rail system and a stern ramp. She entered service in 1935 and saw combat in China and during the initial phase of Japanese offenses during 1942.[72]

Diesel-powered tank

Japan was in the forefront of tank technology in the early 1930s when the land warfare found itself with state funding, introducing a number of innovations such as diesel tank engines. The world’s first diesel-powered tank, this distinction goes to Japanese Type 89B I-Go Otsu, produced with a diesel engine from 1934 onwards.[73]

Naval telegraphy

The Battle of Tsushima was the first naval battle in which wireless telegraphy (radio) played a critically important role.[74] Wireless telegraphy played an important role from the start. At 04:55, Captain Narukawa of the Shinano Maru sent a message to Admiral Tōgō in Masampo that the «Enemy is in square 203». By 05:00, intercepted radio signals informed the Russians that they had been discovered and that Japanese scouting cruisers were shadowing them. Admiral Tōgō received his message at 05:05, and immediately began to prepare his battle fleet for a sortie.[75]

Lieutenant Akiyama Saneyuki had been sent to the United States as a naval attaché in 1897. He witnessed firsthand the capabilities of radio telegraphy and sent a memo to the Navy Ministry urging that they push ahead as rapidly as possible to acquire the new technology.[76] The ministry became heavily interested in the technology; however it found the cost of the Marconi wireless system, which was then operating with the Royal Navy, to be exceedingly expensive. The Japanese therefore decided to create their own radio sets by setting up a radio research committee under Professor Shunkichi Kimura, which eventually produced an acceptable system. In 1901, having attained radio transmissions of up to 70 miles (110 km), the navy formally adopted radio telegraphy. Two years later, a laboratory and factory were set up at Yokosuka to produce the Type 36 (1903) radios, and these were quickly installed on every major warship in the Combined Fleet by the time the war started.[77]

Alexander Stepanovich Popov of the Naval Warfare Institute had built and demonstrated a wireless telegraphy set in 1900, and equipment from the firm Telefunken in Germany was adopted by the Imperial Russian Navy. Although both sides had early wireless telegraphy, the Russians were using German sets and had difficulties in their use and maintenance, while the Japanese had the advantage of using their own equipment.[78]

Torpedo boat destroyer

Kotaka (Falcon), built in 1885.[79] Designed to Japanese specifications and ordered from the Isle of Dogs, London Yarrow shipyard in 1885, she was transported in parts to Japan, where she was assembled and launched in 1887. The 165-foot (50 m) long vessel was armed with four 1-pounder (37 mm) quick-firing guns and six torpedo tubes, reached 19 knots (35 km/h), and at 203 tons, was the largest torpedo boat built to date. In her trials in 1889, Kotaka demonstrated that she could exceed the role of coastal defense, and was capable of accompanying larger warships on the high seas. The Yarrow shipyards, builder of the parts for Kotaka, «considered Japan to have effectively invented the destroyer».[80]

Workable oxygen torpedo

The Japanese began experimenting with oxygen-driven torpedoes about 1924, but gave up after numerous explosions and failures. Then, in 1927, an eight-man Japanese naval delegation went to the Whitehead Torpedo Works at Weymouth to study and buy a regular version of the Whitehead torpedo. While there, they believed that they had stumbled onto evidence that the Royal Navy was secretly experimenting with oxygen torpedoes. Although they were mistaken, the Japanese delegation was so impressed with the information they had gathered that they sent an extensive report back to Tokyo in 1928. By the end of that year, intensive research and experimentation had begun at the Kure Naval Arsenal on a workable oxygen torpedo. Starting in 1 932, this effort was led by Captain Kishimoto Kaneharu. Step by step, Captain Kishimoto and his colleagues began to attack the problems inherent in the design of such a weapon. Explosions were minimized by using natural air at the start of the engine’s ignition, and oxygen was let in gradually to replace it. The men also took certain precautions to avoid contact between the oxygen and lubricants used in the torpedo’s machinery. Particular care was given to the fuel lines. They were cleaned with a potassium compound to eliminate oil and grease and were redesigned to round out all sharp angles, and their linings were finely ground to eliminate all tiny pits where any residual oxygen, oil, or grease could accumulate. The first test firings of the system, incorporating an engine of standard Whitehead design but using oxygen in place of air, were successfully carried out in 1933. That year, the navy formally designated the weapon as the type 93 torpedo, which has become known in the West as the «long-lance» torpedo, generally recognized as the best torpedo of World War II.[81]

Ijuin fuse

This remarkable Japanese invention by Ijuin Gorō caused the shells to explode on impact rather than, like the Russian armour, simply penetrating the steel plating of enemy vessels and exploding below deck. It was not just the terrible effect of the explosive charge that caused panic. When the shells hit they immediately threw out a wall of fire over everything in range. The Japanese shelling was terrifying and to the watching eyes of the Russians what was hurtling towards them seemed to be carton after carton of liquid fire.[82]

Shimose powder

A picric acid explosive that the Japanese had developed a new type of shell for. The shell was thin-skinned, allowing more space for the Shimose powder explosive 10 percent of the total weight of the shell instead of the normal 2-3 percent. These shells bore the name of furoshiki.[82] Shimose Powder, with its compound treated as top secret, was adopted by the Imperial Japanese Navy from 1893, not only for naval artillery but also for naval mines, depth charges and torpedo warheads. It played an important role in the Japanese victory in the Russo-Japanese War of 1904 to 1905.[83]

Forerunner of the modern flamethrower

Richard Fiedler refined his flamethrower designs, aided by engineer and soldier Bernhard Reddemann. The Japanese are credited with the first use of compressed gas to project an inflammable liquid. As early as the Russo-Japanese War, the Japanese army discovered that infantrymen were prone to suffer huge losses in front of well-guarded fortresses. They used animal organ oil and the kerosene was mixed and ignited, and the harmful gas produced was poured into the Russian defense building to force it to abandon the defense.  Reddemann’s interest in flame weapons had originally been sparked by reports from the battlefields of the 1904-5 Russo-Japanese War. During the siege of Port Arthur, Japanese combat engineers had used hand pumps to spray kerosene into Russian trenches. Once the Russians were covered with the flammable liquid, the Japanese would throw bundles of burning rags at them.[84]

Textile[edit]

Automatic power loom with a non-stop shuttle-change motion

Sakichi Toyoda invented numerous weaving devices. His most famous invention was the automatic power loom in which he implemented the principle of Jidoka (autonomation or autonomous automation). It was the 1924 Toyoda Automatic Loom, Type G, a completely automatic high-speed loom featuring the ability to change shuttles without stopping and dozens of other innovations. At the time it was the world’s most advanced loom, delivering a dramatic improvement in quality and a twenty-fold increase in productivity.This loom automatically stopped when it detected a problem such as thread breakage. This loom delivered the world’s top performance in terms of productivity and textile quality. An engineer from Platt Brothers & Co., Ltd. of England, one of the world’s leading manufacturers of textile machinery at the time, admiringly referred to this loom as «the magic loom».[85]

Garabo spinning

Garabo [ja] (ガラ紡 ) indigenous technology as a transitional innovation between pre-modern cotton-spinning and industrial British-style spinning. The technical breakthrough for the design was attributed to the engineering genius of a single inventor and buddhist monk, Tokimune Gaun [ja] (臥雲辰致 1842-1900). The subsequent innovations of the Garabo were concentrated on the power supply system or the increase (and arrangement) of the spindles. Despite the latter increasing the complexity in frame structure, the core spinning mechanism was not altered. The Garabo technology was conceived as an affordable, accessible, and familiar technology to enhance productivity of peasant house-hold spinning, a common rural by-employment. Exhibited at the first National Industrial Exhibition ( 第1回内国勧業博覧会) in 1877, the machine was highly regarded by Gottfried Wagener [de] (1831-1892) as the best invention displayed at the event. However, since the machine featured a simple mechanism, many imitations were manufactured. Despite its technically-groundbreaking mechanism for resource and labour saving, in the absence of managerial transformation, it was unable to compete with the emergent British-style sector and its modern entrepreneurship.[86][87]

Vinylon

The second man-made fiber to be invented, after nylon. It was first developed by Ichiro Sakurada, H. Kawakami, and Korean scientist Ri Sung-gi at the Takatsuki chemical research center in 1939 in Japan.[88][89]

Technology in postwar Japan (1945–Present)[edit]

Since the mid-20th century, Japan has played an important role in diverse fields of Research and Development.[90] In terms of the number of Triadic patents filed annually in the 21st century, Japan has the highest number in the world, ahead of the United States. Although several different patent families exist, the triadic patent family is widely recognized as the gold standard and highest quality level. Triadic patents are filed jointly in the largest global technology markets: the Japan Patent Office (JPO), the United States Patent and Trademark Office (USPTO), and the European Patent Office (EPO).[91]

Audio[edit]

Digital audio

Commercial digital recording was pioneered by NHK and Nippon Columbia, also known as Denon, in the 1960s. The first commercial digital recordings were released in 1971.[92]

In 1967, the first PCM (pulse-code modulation) recorder was developed by NHK’s research facilities in Japan. In 1969, NHK expanded PCM’s capabilities to 2-channel stereo and 32 kHz 13-bit resolution. In January 1971, using NHK’S PCM recording system, engineers at Denon recorded the first commercial digital recordings, including Uzu: The World of Stomu Yamash’ta 2 by Stomu Yamashta.[92]

Compact Disc Digital Audio (CD-DA), also called Red Book, was an audio format developed by Sony and Philips in 1980,[93] and commercially introduced with their compact disc (CD) format in 1982.

Speech synthesis

In 1968, the first text-to-speech synthesis system was developed by Noriko Umeda’s team at Japan’s Electrotechnical Laboratory.[94]

Direct-drive turntables

The direct-drive turntable was invented by Shuichi Obata, an engineer at Matsushita (now Panasonic),[95] based in Osaka, Japan.[96] It eliminated the belts of older belt-drive turntables, and instead employed a motor to directly drive a platter on which a vinyl record rests.[97] In 1969, Matsushita released it as the SP-10,[97] the first direct-drive turntable on the market,[98] and the first in their Technics series of turntables.[97] This gave rise to turntablism, with the most influential turntable being the Technics SL-1200, released in 1972 and remaining the most widely used turntable in DJ culture for the next several decades.[97][99]

DJ turntablism has origins in the invention of direct-drive turntables. Early belt-drive turntables were unsuitable for turntablism, since they had a slow start-up time, and they were prone to wear-and-tear and breakage,[96] as the belt would break from backspinning or scratching.[100] In 1972, Technics started making their SL-1200 turntable, which became the most popular turntable for DJs due to its high torque direct-drive design.[99] Hip hop DJs began using the Technics SL-1200s as musical instruments to manipulate records with turntablism techniques such as scratching and beat juggling rather than merely mixing records.[99] In 1975,[101] hip-hop DJ Grand Wizard Theodore invented the scratching technique by accident. He developed the technique while experimenting with a Technics SL-1200 turntable, finding that its direct-drive motor would continue to spin at the correct RPM even if the DJ wiggled the record back and forth on the platter.[99] Although Technics stopped producing the SL-1200 in 2010, they remain the most popular DJ turntable due to their high build quality and durability. The SL-1200 evolved into the SL-1200 MK2 in 1979—which, as of the early-2010s, remains an industry standard for DJing.

Walkman

The Walkman prototype was built in 1978 by audio-division engineer Nobutoshi Kihara for Sony co-founder Masaru Ibuka. Ibuka wanted to be able to listen to operas during his frequent trans-Pacific plane trips, and presented the idea to Kihara.[102] The Walkman was commercially released in 1979.

Transportation[edit]

Bullet train

The world’s first high volume capable (initially 12 car maximum) «high-speed train» was Japan’s Tōkaidō Shinkansen, which officially opened in October 1964, with construction commencing in April 1959.[103] The 0 Series Shinkansen, built by Kawasaki Heavy Industries, achieved maximum passenger service speeds of 210 km/h (130 mph) on the Tokyo–Nagoya–Kyoto–Osaka route, with earlier test runs hitting top speeds in 1963 at 256 km/h.[103]

Kei car

Kei cars are a category of small automobiles invented in Japan, including passenger cars, vans, and pickup trucks. They are designed to exploit local tax and insurance relaxations, and in more rural areas are exempted from the requirement to certify that adequate parking is available for the vehicle.[104][105]

Batteries[edit]

Lithium-ion battery

Akira Yoshino invented the modern li-ion battery in 1985. In 1991, Sony and Asahi Kasei released the first commercial lithium-ion battery using Yoshino’s design.[106]

Calculators[edit]

Electric calculators

The world’s first all-electric compact calculator was the Casio Computer Company’s Model 14-A, released in 1957.[107][108][109] The first electronic desktop calculator with on-board memory was the Casio 001, released in 1965.[108] In 1967, Casio released the AL-1000, the world’s first programmable desktop calculator.[108][110]

Large-scale integration (LSI)

The Sharp QT-8D, a desktop calculator released in 1969, was the first calculator to have its logic circuitry entirely implemented with LSI (large-scale integration) integrated circuits (ICs) based on MOS (metal-oxide-semiconductor) technology.[111][112][113] Upon its introduction,[113] it was one of the smallest electronic calculators ever produced commercially.

Portable calculators

The first portable calculators appeared in Japan in 1970, and were soon marketed around the world. These included the Sanyo ICC-0081 «Mini Calculator», the Canon Pocketronic, and the Sharp QT-8B «micro Compet». In January 1971, the Sharp EL-8 was close to being a pocket calculator, weighing about one pound, with a vacuum fluorescent display (VFD) and rechargeable NiCad batteries. The EL-8 was the first battery-powered handheld calculator.[114]

The concept of a single-chip calculator was conceived by Sharp engineer Tadashi Sasaki in 1968.[115] The first truly pocket-sized electronic calculator was the Busicom LE-120A «HANDY», the first single-chip calculator to be built, released in February 1971.[116] The Busicom 141-PF desktop calculator, released in March 1971, was the first computing machine to use a microprocessor, the 4-bit Intel 4004 (co-designed by Busicom’s Masatoshi Shima).[117][118]

LCD calculators

In 1971, Tadashi Sasaki began research on the use of LCD displays for calculators at Sharp Corporation.[115] In 1973, Sharp commercially introduced the first LCD calculators.[119][115]

Cameras[edit]

Analog cameras

The Asahiflex II, released by Asahi (Pentax) in 1954, was the world’s first single-lens reflex camera (SLR camera) with an instant return mirror.[120]

In 1967, Sony unveiled the Portapak, the first self-contained video tape analog recording system that was portable.[121] On 25 August 1981, Sony unveiled a prototype of the first still video camera, the Sony Mavica. This camera was an analog electronic camera that featured interchangeable lenses and an SLR viewfinder.

Digital SLR (DSLR)

At photokina in 1986, Nikon revealed a prototype digital still SLR camera, the Nikon SVC, the first digital SLR. The prototype body shared many features with the N8008.[122][123] In 1988, Nikon released the first commercial DSLR camera, the QV-1000C.[123]

The first full-frame DSLR cameras were developed in Japan from around 2000 to 2002: the MZ-D by Pentax,[124] the N Digital by Contax’s Japanese R6D team,[125] and the EOS-1Ds by Canon.[126]

Camcorders

In 1982, JVC and Sony announced the first camcorders, as CAMera/reCORDER combinations.[127] That year, Sony released the first camcorder, the Betacam system, for professional use.[128] In 1983, Sony released the first consumer camcorder, the Betamovie BMC-100P,[128] and JVC released the first VHS-C camcorder.[129]

Camera phone

In 2000, Sharp Corporation introduced the world’s first camera phone, the J-SH04 J-Phone, in Japan.[130]

Civil construction[edit]

Roller-compacted concrete dam

Japan is the country where the world’s first roller-compacted concrete dam was constructed in 1980. Japanese engineers developed an approach defined as the «Roller-Compacted Dam method (RCD)” designed to achieve the same quality and appearance of conventional mass concrete, which resulted in the placement of RCC for the main body of Shimajigawa Dam in Japan, from 1978 to 1980. Since then, about 40 roller-compacted concrete dams have been constructed in Japan. Japanese roller-compacted concrete dams are called RCD dams and are distinguished from the other roller-compacted concrete dams (RCC) because there are some differences in their design and construction philosophies. The Japanese design is widely influential.[131]

NSP kiln

The successful technological development of the new suspension preheater ( NSP ) kiln prompted Japanese cement companies to build up their technological development know-how. Companies successively began to develop new cement-manufacturing-related machinery. Japan came to lead the world in cement manufacturing technology. NSP technology has also been actively licensed overseas. The NSP kiln is a Japanese technology still used throughout the world today. It was developed by several Japanese cement companies, either independently or in collaboration with plant manufacturers. Several different
successful systems were developed, but all of them
included a separate furnace (calciner) with the preheater, thereby improving the decarbonization rate of the raw material and increasing the output of the rotary kiln.[132]

Communications[edit]

Optical communication

While working at Tohoku University, Jun-ichi Nishizawa proposed fiber-optic communication, the use of optical fibers for optical communication, in 1963.[133] Nishizawa invented other technologies that contributed to the development of optical fiber communications, such as the graded-index optical fiber as a channel for transmitting light from semiconductor lasers.[134][135] He patented the graded-index optical fiber in 1964.[90] The solid-state optical fiber was invented by Nishizawa in 1964.[136]

Hardware elements providing the basis of internet technology, the three essential elements of optical communication, were invented by Jun-ichi Nishizawa: the semiconductor laser (1957) being the light source, the graded-index optical fiber (1964) as the transmission line, and the PIN photodiode (1950) as the optical receiver.[90] Izuo Hayashi’s invention of the continuous wave semiconductor laser in 1970 led directly to the light sources in fiber-optic communication, commercialized by Japanese entrepreneurs,[137] and opened up the field of optical communication, playing an important role in the communication networks of the future.[138] Their work laid the foundations for the Digital Revolution and the Information Age.[90]

Mobile communication

The first emoji was created in 1998 or 1999 in Japan by Shigetaka Kurita.[139]

Computing[edit]

Digital circuits

The parametron was a logic circuit element invented by Eiichi Goto in 1954.[140] It was a digital computer element.[17] Parametrons were used in Japanese computers from 1954 to the early 1960s, such as the University of Tokyo’s PC-1 built in 1958, due to being reliable and inexpensive, but were ultimately surpassed by transistors due to differences in speed.[141]

Digital computers

The ETL Mark I, Japan’s first digital automatic computer, began development in 1951 and was completed in 1952.[142] It was developed by the Electrotechnical Laboratory using relays, based on the switching circuit theory formulated by Akira Nakashima in the 1930s and advanced by Goto Mochinori in the 1940s.[56][57]

Transistor computers

The ETL Mark III began development in 1954,[143] and was completed in 1956, created by Japan’s Electrotechnical Laboratory.[144] It was the first stored-program transistor computer.[144][145][57] It used ultrasonic delay-line memory.[144]

The ETL Mark III’s successor, the ETL Mark IV, began development in 1956 and was completed in 1957. It was a stored-program transistor computer with high-speed magnetic drum memory.[146][57] A modified version of the ETL Mark IV, the ETL Mark IV A, was introduced in 1958, as a fully transistorised computer with magnetic-core memory and an index register.[57][147]

The MARS-1 system was created by Mamoru Hosaka, Yutaka Ohno and others at the Railway Technical Research Institute in the 1950s, and was produced by Hitachi in 1958.[148] It was the world’s first computer reservation system for trains.[57] The MARS-1 was capable of reserving seat positions, and was controlled by a transistor computer with a central processing unit consisting of a thousand transistors.[148] It also had a 400,000-bit magnetic drum memory unit, and many registers, to indicate whether seats in a train were vacant or reserved, for communications with terminals, printing reservation notices, and CRT displays.[148]

The use of microprogramming in electronic transistor computers dates back to 1961, with the KT-Pilot, an early microprogram-controlled electronic computer developed by Kyoto University and Toshiba in Japan.[57][149]

Office computers

Compact office computers originated from Japan in the early 1960s. While American offices at the time ran large minicomputers loaded with business applications, Japanese manufacturers invented highly compact office computers, with hardware, operating systems, peripheral devices and application development languages specifically developed for business applications, playing a big role in Japan’s booming economy. The first office computers released in 1961: Casio’s TUC Compuwriter, NEC’s NEAC-1201 parametron computer, and Unoke Denshi Kogyo’s USAC-3010.[150] In 1967, NEC introduced the NEAC-1240, the world’s first small IC (integrated circuit) computer.[151]

Computer music

In Japan, experiments in computer music date back to 1962, when Keio University professor Sekine and Toshiba engineer Hayashi experimented with the TOSBAC computer. This resulted in a piece entitled TOSBAC Suite. Later Japanese computer music compositions include a piece by Kenjiro Ezaki presented during Osaka Expo ’70 and «Panoramic Sonore» (1974) by music critic Akimichi Takeda. Ezaki also published an article called «Contemporary Music and Computers» in 1970. Since then, Japanese research in computer music has largely been carried out for commercial purposes in popular music.[152]

Computer graphics

Particularly well known iconic digital computer graphics images include Running Cola is Africa,[153] by Masao Komura and Koji Fujino, created at the Computer Technique Group, Japan, in 1967.[154]

4-bit microprocessors

The concept of a single-chip microprocessor CPU (central processing unit) was conceived in a 1968 meeting in Japan between Sharp engineer Tadashi Sasaki and an unnamed female software engineering researcher from Nara Women’s College. He discussed the concept at a brainstorming meeting that was held in Japan. Sasaki attributes the basic invention to break the chipset of a calculator into four parts with ROM (4001), RAM (4002), shift registers (4003) and CPU (4004) to an unnamed woman, a software engineering researcher from Nara Women’s College, who was present at the meeting. Sasaki then had his first meeting with Noyce in 1968. Sasaki discussed the microprocessor concept with Busicom and Intel in 1968, and presented the woman’s four-division chipset concept to Intel and Busicom. This provided the basis for the single-chip microprocessor design of the Intel 4004.[115] He was also involved in the development of the Busicom 141-PF desktop calculator which led to the 4004’s creation.[118] Sasaki thus played a key role in the creation of the first microprocessor.[115]

The first commercial microprocessor, the 4-bit Intel 4004, began with the «Busicom Project»[155] in 1968 as Masatoshi Shima’s three-chip CPU design for the Busicom 141-PF calculator.[118][155] In April 1968, Shima was tasked with designing a special-purpose LSI chipset, along with his supervisor Tadashi Tanba, for use in the Busicom 141-PF desktop calculator.[118][117] This later became known as the «Busicom Project».[155] His initial design consisted of seven LSI chips, including a three-chip CPU.[155] His design included arithmetic units (adders), multiplier units, registers, read-only memory, and a macro-instruction set to control a decimal computer system.[118] Busicom then wanted a general-purpose LSI chipset, for not only desktop calculators, but also other equipment such as a teller machine, cash register and billing machine. Shima thus began work on a general-purpose LSI chipset in late 1968.[117]

In 1969, Busicom asked Intel, a company founded one year earlier in 1968 for the purpose of making solid state random-access memory (RAM), to finalize and manufacture their calculator engine. Intel, which was more of a memory company back then, had facilities to manufacture the high density silicon gate MOS chip Busicom required.[117] Shima went to Intel in June 1969 to present his design proposal. Due to Intel lacking logic engineers to understand the logic schematics or circuit engineers to convert them, Intel asked Shima to simplify the logic.[117] Intel wanted a single-chip CPU design,[117] influenced by Sharp’s Tadashi Sasaki who presented the concept to Busicom and Intel in 1968.[115] The single-chip microprocessor design was then formulated by Intel’s Marcian Hoff in 1969, simplifying Shima’s initial design down to four chips, including a single-chip microprocessor CPU.[155] Due to Hoff’s formulation lacking key details, Shima came up with his own ideas to find solutions for its implementation. Shima was responsible for adding a 10-bit static shift register to make it useful as a printer’s buffer and keyboard interface, many improvements in the instruction set, making the RAM organization suitable for a calculator, the memory address information transfer, the key program in an area of performance and program capacity, the functional specification, decimal computer idea, software, desktop calculator logic, real-time I/O control, and data exchange instruction between the accumulator and general purpose register. Hoff and Shima eventually realized the 4-bit microprocessor concept together, with the help of Intel’s Stanley Mazor to interpret the ideas of Shima and Hoff.[117] Busicom’s management agreed to the new proposal.[156] The architecture and specifications of the four chips were designed over a period of a few months in 1969, between an Intel team led by Hoff and a Busicom team led by Shima.[155]

After Shima went back to Japan in late 1969 and then returned to Intel in early 1970, he found that no further work had been done on the 4004 since he left, and that Hoff was no longer working on the project. The project leader had become Federico Faggin, who had only joined Intel a week before Shima arrived. After explaining the project to Faggin, Shima worked with him to design the 4004 processor, with Shima responsible for the chip’s logic.[117] The chip’s final design was completed in 1970 by Intel’s Federico Faggin and Busicom’s Masatoshi Shima. The Intel 4004 was commercially released in 1971, first as part of the Busicom 141-PF calculator and then separately by Intel. The 4004 was also used in other Busicom machines, including an automated teller machine (ATM) and cash register.[155][117] The microprocessor became the basis for microcomputers, which led to the microcomputer revolution.

NEC released the μPD707 and μPD708, a two-chip 4-bit microprocessor CPU, in 1971.[157] They were followed by NEC’s first single-chip microprocessor, the μPD700, in April 1972,[158][159] a prototype for the μCOM-4 (μPD751), released in April 1973,[158] combining the μPD707 and μPD708 into a single microprocessor.[157] In 1973, Toshiba developed the TLCS-12,[158][160] the world’s first 12-bit microprocessor.[161] The project began in 1971, when Toshiba began developing a microprocessor for Ford Motor Company’s Electronic Engine Control (EEC) project, which went on to utilize Toshiba’s 12-bit microprocessor.[161]

8-bit to 32-bit microprocessors

Masatoshi Shima joined Intel in 1972.[162] The Intel 8080, released in 1974, was the first general-purpose microprocessor.[163] The 8-bit Intel 8080 was designed by Federico Faggin and Masatoshi Shima.[164] Shima was employed to implement the transistor-level logic of the 8080.[117] In 1975, Shima joined Zilog, where he designed the Zilog Z80 released in 1976 and the Zilog Z8000 released in 1979. After returning to Japan, Shima founded the Intel Japan Design Center in 1980 and VM Technology Corporation in 1986. At VM, he developed the 16-bit microprocessor VM860 and 32-bit microprocessor VM 8600 for the Japanese word processor market. He became a professor at the University of Aizu in 2000.[162]

In 1975, Panafacom (a conglomeration of Fujitsu, Fuji Electric and Matsushita) developed the first commercial 16-bit single-chip microprocessor,[165] the MN1610.[166][167] According to Fujitsu, it was «the world’s first 16-bit microcomputer on a single chip».[165]

In the early 1990s, engineers at Hitachi found ways to compress RISC instruction sets so they fit in even smaller memory systems than CISC instruction sets. They developed a compressed instruction set for their SuperH series of microprocessors, introduced in 1992.[168] The SuperH instruction set was later adapted for the ARM architecture’s Thumb instruction set.[169] Compressed instructions appeared in the ARM architecture, after ARM Holdings licensed SuperH patents as a basis for its Thumb instruction set.[169]

Peripheral chips

While working for Intel in the 1970s, Masatoshi Shima designed a number of Intel peripheral chips. Some of his peripheral chips were used in the IBM PC, including the Intel 8259 interrupt controller, 8255 parallel port chip, 8253 timer chip, 8257 DMA chip, and 8251 serial communication USART chip.[162]

Microcomputers

The first microcomputer was Sord Computer Corporation’s SMP80/08.[170] It was developed in 1972, using the 8-bit Intel 8008 microprocessor, which it was developed in tandem with.[163]

The first personal computers based on the Intel 8080 were the Sord SMP80/x series,[163] released in 1974.[163][170] They were the first microcomputers with an operating system.[171] The SMP80/x series marked a major leap toward the popularization of microcomputers.[163] In 1977, Panafacom released an early 16-bit microcomputer, the Lkit-16, based on the 16-bit Panafacom MN1610 microprocessor they developed in 1975.[166]

Home computers

Sord Computer Corporation’s M200 Smart Home Computer, released in 1977, was one of the first home computers. It was an early desktop computer that combined a Zilog Z80 CPU, keyboard, CRT display, floppy disk drive and MF-DOS operating system into an integrated unit. The Sord M223 Mark VI, introduced in 1979, was an early personal computer to come standard with a built-in hard disk drive.[172]

Yash Terakura’s team at Commodore Japan was responsible for designing the color PET in 1979 and the VIC-20 (VIC-1001) in 1980.[173] In 1981, the Commodore MAX Machine was developed by a team led by Yashi Terakura at Commodore Japan in 1981,[174] and was a predecessor to the popular Commodore 64. Also in 1981, Terakura designed the Commodore 64,[173] along with Shiraz Shivji.[175] In 1982, NEC introduced the PC-9800 series, which went on to sell 18 million units.[176]

3D computer graphics

An early example of 3D computer graphics software for personal computers is 3D Art Graphics, a set of 3D computer graphics effects, written by Kazumasa Mitazawa and released in June 1978 for the Apple II home computer.[177][178]

The first implementation of Real-time 3D ray tracing was the LINKS-1 Computer Graphics System, built in 1982 at Osaka University’s School of Engineering, by professors Ohmura Kouichi, Shirakawa Isao and Kawata Toru with 50 students. It was a massively parallel processing computer system with 514 microprocessors, used for rendering realistic 3D graphics with high-speed ray tracing. According to the Information Processing Society of Japan: «By developing a new software methodology specifically for high-speed image rendering, LINKS-1 was able to rapidly render highly realistic images.» It was «used to create the world’s first 3D planetarium-like video of the entire heavens that was made completely with computer graphics. The video was presented at the Fujitsu pavilion at the 1985 International Exposition in Tsukuba.»[179]

Music Macro Language (MML)

In 1978, Japanese personal computers such as the Sharp MZ and Hitachi Basic Master were capable of digital synthesis, which were sequenced using Music Macro Language (MML).[180] This was used to produce chiptune video game music.[152]

Graphics processing unit (GPU)

The NEC µPD7220, also known as the 7220, was the first true graphics processing unit (GPU),[181] designed as a microprocessor,[182] with VLSI,[183] the first implementation of a graphics processor as a single Large Scale Integration (LSI) integrated circuit chip. This enabled the design of low-cost, high-performance video graphics cards, such as those from Number Nine Visual Technology, and was the basis for clones such as the Intel 82720.[184] The 7220 project was started in 1979, and a paper was published in 1981.[185] It debuted in Japan with NEC’s PC-9800 series of personal computers in 1982, and then released independently. The 7220 had a fillrate of 1.25 megapixels per second and a rasterisation rate of 125 polygons (100-pixel by 100-pixel) per second, faster than central processing units (CPU) at the time.[186] The 7220’s high resolution color graphics led NEC to market it as a «resolution revolution». By 1983, it was used in NEC’s APC computers, and other computers from Digital Equipment Corporation and Wang Laboratories.[187]

The 7220 and its clones led the early GPU market for several years,[184] and was still the best known GPU in 1986.[186] It was eventually surpassed by the more powerful Hitachi HD63484 ACRTC, released in 1984.[188][189]

Laptops

Yukio Yokozawa, an employee for Suwa Seikosha, a branch of Seiko (now Seiko Epson), invented the first laptop (notebook) computer in July 1980, receiving a patent for the invention.[190] Seiko’s notebook computer, known as the HC-20 in Japan, was announced in 1981.[191] In North America, Epson introduced it as the Epson HX-20 in 1981, at the COMDEX computer show in Las Vegas, where it drew significant attention for its portability.[192] It had a mass-market release in July 1982, as the HC-20 in Japan[191] and as the Epson HX-20 in North America.[193] It was the first notebook-sized handheld computer (mobile device),[194][191][193] the size of an A4 notebook and weighing 1.6 kg (3.5 lb).[191] In 1983, the Sharp PC-5000[195] and Ampere WS-1 laptops from Japan featured a modern clamshell design.[196][197]

FM synthesis and MIDI

The Yamaha GS-1, the first commercial FM digital synthesizer, released in 1980, was programmed using a proprietary Yamaha computer, which at the time was only available at Yamaha’s headquarters in Japan (Hamamatsu) and the United States (Buena Park).[198]

It was not until the advent of MIDI in 1983 that general-purpose computers started to play a key role in mainstream music production.[199] In 1982, the NEC PC-88 and PC-98 computers introduced MIDI support.[152]

MSX and Yamaha modules

In 1983, the Yamaha CX5 MSX computer and Yamaha MSX modules introduced FM synthesis[200][201] and MIDI sequencing to the MSX personal computer,[202][201] including MIDI software with capabilities such as synthesizing and sequencing sounds and rhythms.[203] They provided synthesis, composition tools, and a 4-track MIDI sequencer, available on different cartridges.[204]

The Yamaha CX5M is an MSX-based personal computer, specializing in music and sound production. It was originally released as the CX5 in 1983,[200][205] before being upgraded to the CX5M in 1984. The CX5 was a YIS-303 MSX computer with a built-in SKW-01 sound module,[205] while the CX5M was a YIS-503 Diabolik MSX computer with a built-in SFG-01 FM Sound Synthesizer Unit sound module.[206][201][207] The CX5M was marketed as an electronic musical instrument,[206] and was one of the most anticipated electronic music products of 1984.[201]

It expands upon the normal features expected from these systems with a built-in eight-voice FM synthesizer module, manufactured by Yamaha Corporation,[208] along with a MIDI interface.[202][201] It came with graphical music software for digital synthesis and a sequencing,[202][201] capable of synthesizing and sequencing sounds and rhythms,[203] with its internal FM synthesizer or external MIDI devices.[202] It provided synthesis, composition tools, and a four-track MIDI sequencer, available on different cartridges.[204]

The SFG-01 FM Sound Synthesizer Unit, released in 1983,[207][209] uses several chips, including a Yamaha YM2151 FM sound chip, YM3012 stereo DAC, YM2210 MIDI communications chip, YM2148 keyboard scanning chip,[201] and YM2148 MIDI UART.[209] It also has stereo audio outputs, an input for a purpose-built four-octave keyboard, and a pair of MIDI Input/Output ports. It had limited MIDI support on the original CX5M model,[201] with only management of data from a Yamaha DX7 digital synthesizer. The YIS-303, CX5, YIS-503 and CX5M computers could be upgraded with the SFG-01 FM Sound Synthesizer Unit II sound module, released in 1984,[209] featuring an upgraded Yamaha YM2164 sound chip[209] and full MIDI support, which could be used for normal MIDI. The SFG-05 module came integrated with the second CX5M revision, the CX5M II.[206]

Music software were released on MSX cartridges, including YRM-101/YRM11 FM Music Composer, YRM-102/YRM12 FM Voicing Program, YRM-103/YRM13 DX-7 Voicing Program, YRM-104/YRM15 Yamaha FM Music Macro, YRM-105 DX-9 Voicing Program, YRM-301 MIDI Recorder YRM-301, YRM-302 RX Editor, YRM-303 MIDI Macro & Monitor, YRM-304 TX-7 Voicing Program, YRM-305 DX-21 Voicing Program, YRM-501 FM Music Composer II, YRM-502 FM Voicing program, YRM-504 Yamaha FM Music Macro II, and YRM-506 FB-01 Voicing Program.[206][201]

Later, Yamaha released the Yamaha FB-01 MIDI module, which was effectively an SFG-05 in a standalone, portable case. FB-01 is an independent Z80 microprocessor system that sends and receives data from YM2164.[210] The FB-01 was released in 1986.[211]

Sound cards and sound modules

In 1983, Roland Corporation’s CMU-800 sound module introduced music synthesis and sequencing to the PC, Apple II,[212] and Commodore 64.[213]

The spread of MIDI on computers was facilitated by Roland Corporation’s MPU-401, released in 1984. It was the first MIDI-equipped PC sound card, capable of MIDI sound processing[214] and sequencing.[215][216] After Roland sold MPU sound chips to other sound card manufacturers,[214] it established a universal standard MIDI-to-PC interface.[217] The widespread adoption of MIDI led to computer-based MIDI software being developed.[199] In 1987, Roland introduced LA synthesis to the computer music market, with the Roland MT-32 MIDI sound module.[218]

USB

A group of several companies began the development of USB in 1994, including Japanese company NEC.[219]

Displays[edit]

Aperture grille

Aperture grille is one of the two major CRT display technologies. Aperture grille was introduced by Sony with their Trinitron television in 1968.[220] The Trinitron television was invented by Sony’s Susumu Yoshida in 1968.[66]

Shadow mask

The other major CRT display technology.

Handheld television

In 1970, Panasonic released the first handheld television, small enough to fit in a large pocket, the Panasonic IC TV MODEL TR-001. It featured a 1.5-inch display, along with a 1.5-inch speaker.[221]

Liquid crystal display (LCD)

LCD displays incorporating thin film and transistors were demonstrated in 1970 by J. Kishimoto from Canon[222] and Katsumi Yamamura from Suwa Seikosha (Seiko),[223] and further developed by Sharp Corporation in 1976.[224] In 1977, a TFT LCD (thin-film transistor LCD) display was demonstrated by a Sharp team consisting of Kohei Kishi, Hirosaku Nonomura, Keiichiro Shimizu and Tomio Wada.[225] The LCD color display was invented by Sharp’s Shinji Kato and Takaaki Miyazaki in May 1975,[226] and then improved by Fumiaki Funada and Masataka Matsuura in December 1975.[227]

The first LCD televisions were invented as color handheld televisions in Japan. In 1980, Hattori Seiko’s R&D group began development on pocket LCD color televisions, which led to the release of the first commercial TFT LCD displays by three of its subsidiaries.[228] In 1982, Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with an active-matrix LCD television.[229][193] In 1983, Casio released a handheld LCD television, the Casio TV-10.[230] In 1984, Epson released the ET-10, the first full-color, pocket LCD television.[231] Seiko Hattori subsidiary Citizen Watch introduced the Citizen Pocket TV, a color TFT LCD handheld television,[228][232] with a 2.7-inch display, in 1984.[232] By 1985, two other Seiko Hattori subsidiaries had also introduced TFT LCD handheld televisions, with Seiko’s color micro-TV and the Epson ELF.[228]

High definition television (HDTV)

As Japanese consumer electronics firms forged ahead with the development of HDTV technology, and as the MUSE format proposed by NHK, a Japanese company, was seen as a pacesetter that threatened to eclipse US electronics companies. MUSE, the development of which began in the 1970s,[233] was a hybrid system with analog and digital features.[234] Until 1990, the Japanese MUSE standard was the front-runner among the more than 23 different technical concepts under consideration.

Widescreen

Widescreen televisions date back to the 1970s, when Japan’s NHK introduced the MUSE high-definition television system, which was soon backed by Sony and other Japanese television manufacturers.[233]

LCD watches

Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971 for an electronic wristwatch incorporating a TN LCD display.[235] Sharp Corporation mass-produced TN LCD displays for watches in 1975.[119]

Large LCD displays

Sharp Corporation developed the first large LCD displays in 1986, based on color TFT LCD technology.[119] In 1988, Sharp introduced the first commercial large LCD television, a 14″ TFT LCD model with active matrix addressing. The release of Sharp’s large LCD TV in 1988 led to Japan launching an LCD industry, which developed large-size LCD displays, including TFT computer monitors and LCD televisions.[236]

Plasma

The world’s first color plasma display was produced by Fujitsu and released in 1989.[237]

LCD projectors

Epson developed the 3LCD color projection technology in the 1980s, and licensed it for use in LCD projectors in 1988.[238] The first color LCD video projectors were Epson’s compact 3LCD-based VPJ-700, released in January 1989,[193] and an LCD color video projector released by Sharp Corporation in 1989.[239] Epson’s 3LCD technology went on to be adopted by about 40 different projector brands worldwide.[238]

LED-backlit LCD

The world’s first LED-backlit LCD television was Sony’s Qualia 005, released in 2004.[240]

Electronics[edit]

Jun-ichi Nishizawa invented ion implantation in 1950.[136]

Neodymium magnets were invented independently in 1982 by General Motors (GM) and Sumitomo Special Metals.[241] It is the most widely used type of rare-earth magnet.[242]

Transistors and thyristors

In 1950, the static induction transistor was invented by Jun-ichi Nishizawa and Y. Watanabe.[243] It was the first type of JFET (junction gate field-effect transistor), with a short channel length.[244] In 1971, Jun-ichi Nishizawa invented the static induction thyristor.[245][246]

Diodes

The PIN diode/photodiode was invented by Jun-ichi Nishizawa and his colleagues in 1950.[247] This was the basis for the laser diode. In 1952, Nishizawa invented the avalanche photodiode.[245] Nishizawa also introduced tunnel injection in 1958, and invented the varicap (variable capacitance diode) in 1959.[136]

Lasers

In 1955, Jun-ichi Nishizawa invented the first solid-state maser.[245] In 1957, Nishizawa filed a patent for the first semiconductor laser,[245][90][248] and discovered semiconductor inductance.[136]

The continuous wave semiconductor laser was invented by Izuo Hayashi and Morton B. Panish in 1970. This led directly to the light sources in fiber-optic communication, laser printers, barcode readers, and optical disc drives, technologies that were commercialized by Japanese entrepreneurs.[137]: 252 

In 1992, Japanese inventor Shuji Nakamura invented the first efficient blue laser (blue LED).[249] Nakamura invented it with Isamu Akasaki and Hiroshi Amano, for which the three of them were awarded the 2014 Nobel Prize in Physics, stating that it «enabled bright and energy-saving white light sources», for applications such as LED lamps.[250]

Digital fax

The first digital fax machine was the Dacom Rapidfax, first sold in the late 1960s.[251][252]

Automated teller machine (ATM)

The idea of an automated teller machine (ATM), for out-of-hours cash distribution, developed from bankers’ needs in Japan.[253][254][255] The Japanese device was called «Computer Loan Machine» and supplied cash as a three-month loan at 5% p.a. after inserting a credit card. The device was operational in 1966.[256][257] The first microprocessor-based ATM machines were released by Busicom in the early 1970s, using the Intel 4004 (co-designed by Busicom’s Masatoshi Shima).[117]

Games[edit]

The first handheld electronic game was Electro Tic-Tac-Toe, released by Japanese manufacturer Waco in 1972.[258][259][260][261][262][263]

The first color video game was the 1973 arcade game Playtron, developed by Japanese company Kasco (Kansei Seiki Seisakusho Co.), which only manufactured two cabinets of the game.[264] The first video game to represent player characters as human sprite images was Taito’s Basketball, which was licensed in February 1974 to Midway, releasing it as TV Basketball in North America.[265][266] Tomohiro Nishikado’s arcade racing video game Speed Race, released by Taito in 1974, introduced scrolling graphics, where the sprites move along a vertical scrolling overhead track.[267]

The first tile-based video game was Namco’s arcade game Galaxian (1979).[268] It debuted the Namco Galaxian arcade system board, which used specialized graphics hardware, supporting RGB color and introducing multi-colored sprites, tilemap backgrounds,[269] a sprite line buffer system,[270] and scrolling graphics.[271] The Namco Galaxian hardware was widely adopted by other arcade game manufacturers during the golden age of arcade video games,[272] including Centuri, Gremlin, Irem, Konami, Midway, Nichibutsu, Sega and Taito.[273] It also inspired Nintendo’s hardware for Radar Scope and Donkey Kong as well as the Nintendo Entertainment System home console.[271]

Hardware sprite graphics was introduced by Namco’s Pac-Man (1980), with the Namco Pac-Man hardware.[274]

Instruments[edit]

Japanese electronic musical instruments were important to the development of electronic music and electronic dance music, such as the Roland TR-808[275][276] and TR-909 drum machines,[277][278] the Roland TB-303 bass synth,[279] and the Technics SL-1200 direct-drive turntable.[99]

Electronic organ

Yamaha engineer Mr. Yamashita invented the Yamaha Magna Organ in 1935. It was an electrostatic reed organ, a multi-timbral keyboard instrument based on electrically blown free reeds with pickups.[59][60]

Electronic drum

At NAMM 1964, Japanese company Ace Tone revealed the R-1 Rhythm Ace, the first fully transistorized electronic drum instrument. Created by Ikutaro Kakehashi, who later founded Roland Corporation, the R-1 was a hand-operated percussion device that played electronic drum sounds manually as the user pushed buttons, in a similar fashion to modern electronic drum pads.[280][281][282]

Since the 1970s, a number of Japanese companies began selling popular electronic drum kits, notably Roland’s Octapad and V-Drums, and Yamaha’s electronic Yamaha Drums and Yamaha DTX series. In 1997, Roland introduced its TD-10 model, a sound module for its V-Drums.

Rhythm machines (drum machines)

In 1963, Keio-Giken (Korg) released their first rhythm machine, Donca-Matic DA-20, using vacuum tube circuits for sounds and mechanical-wheel for rhythm patterns. It was a floor-type machine with built-in speaker, and featuring a keyboard for the manual play, in addition to the multiple automatic rhythm patterns. Its price was comparable with the average annual income of Japanese at that time.[283] Their efforts were then focused on the improvement of reliability and performance, along with the size reduction and the cost down. Unstable vacuum tube circuit was replaced with reliable transistor circuitry on Donca-Matic DC-11 in the mid-1960s, and in 1966, bulky mechanical-wheels were also replaced with compact transistor circuitry on Donca-Matic DE-20 and DE-11. In 1967, Korg Mini Pops MP-2 was developed as an option of the Yamaha Electone (electronic organ), and Mini Pops was established as a series of compact desktop rhythm machines.[283]

Nippon Columbia received a 1965 patent for an electronic automatic rhythm machine instrument. It described it as an «automatic rhythm player which is simple but capable of electronically producing various rhythms in the characteristic tones of a drum, a piccolo and so on.»[284]

At around the same time, Korg also introduced transistor circuitry for their Donca-Matic DC-11 electronic drum machine, some time between 1963 and 1966.[283] The Korg Mini Pops MP-2, MP-5 and MP-7 were released in 1967.[282] Korg’s Stageman and Mini Pops series of drum machines, introduced in 1967, were notable for «natural metallic percussion» sounds and incorporating controls for drum «breaks and fill-ins.»[285] The smaller MP-5 had 10 preset rhythms, while the larger MP-7 had 20 preset rhythms. Both had controls for tone, tempo, and volume, while the MP-7 also had dedicated faders for adding ouijada, guiro and tambourine. The controls allowed the user to press more than one preset to combine rhythms.[282] One notable use of a Mini Pops drum machine was by French musician Jean-Michel Jarre, in the final part of his breakthrough album, Oxygene (1976). This rhythm was achieved by overlaying two of the presets.[286] He also used it for his 1978 album Équinoxe.[282] The Donca-Matic is also referenced in Gorillaz’ «Doncamatic» (2010).[282]

As the result of their robustness and compact size, rhythm machines were gradually installed on electronic organs as accompaniment of organists, and finally spread widely. Ace Tone drum machines found their way into popular music starting in the late 1960s, followed by Korg and Roland drum machines in the early 1970s.[287] The first major pop song to use a drum machine was «Saved by the Bell» by Robin Gibb, which reached No. 2 in Britain in 1969. It used a «slow rock» rhythm preset on Ace Tone’s FR-1 Rhythm Ace.[285][288] The German krautrock band Can also used a drum machine on their song «Peking O» (1971), which combined acoustic drumming with Ace Tone’s Rhythm Ace drum machine.[289] The first album on which a drum machine produced all the percussion was Kingdom Come’s Journey, recorded in November 1972 using Ace Tone’s Bentley Rhythm Ace.[290] Timmy Thomas’ 1972 R&B single «Why Can’t We Live Together»/»Funky Me» featured a distinctive use of a Roland drum machine[291] and keyboard arrangement on both tracks. George McCrae’s 1974 disco hit «Rock Your Baby» used a drum machine,[292] an early Roland rhythm machine.[291]

Effects pedals

The Uni-Vibe, also known as Jax Vibra-Chorus,[293] is a footpedal-operated phaser or phase shifter for creating chorus and vibrato simulations for electric organ or guitar. Designed by audio engineer Fumio Mieda,[294] it was introduced in the 1960s by Japanese company Shin-ei, and then released in North America by Univox in 1968.[293] The pedals soon became favorite effects pedals of rock guitarists Jimi Hendrix and Robin Trower.[294]

In 1976, Roland subsidiary Boss Corporation released the CE-1 Chorus Ensemble, which was a stand-alone unit of the chorus/vibrato circuit found in the Roland JC-120 amplifier.[295] The chorus circuit from the amp was put it into a stomp box, making the CE-1 the first chorus pedal.[296] The chorus pedal went on to become a standard effects unit among guitarists.[297] Boss effects units subsequently became the de facto standard of guitar effects for decades, with many guitarists relying on them for sonic experimentation.[296]

Boss Corporation’s DD-2 Digital Delay, released in 1983, was the world’s first digital delay effects unit in stomp box form. It uses a custom integrated circuit (IC) chip that was originally developed for Roland Corporation’s SDE-3000 rack delay unit. It was succeeded by the DD-3 Digital Delay in 1986.[297] Boss Corporation’s RV-2 Digital Reverb, released in 1987, was the world’s first digital reverb pedal. It used a new custom DSP processor developed by Boss, originally for the RRV-10 Digital Reverb in the Micro Rack series.[297]

Analog synthesizers

Yamaha developed an early multi-voice polyphonic synthesizer, the Yamaha GX-1, in 1973.[298] In 1974, Roland Corporation released the EP-30, the first touch-sensitive electronic keyboard.[299] Roland released an early polyphonic string synthesizer, the Roland RS-202, in 1975, followed by the Roland RS-202 in 1976.[300][301]

Digital synthesizers

In 1973,[302] Yamaha licensed the algorithms for frequency modulation synthesis (FM synthesis) from John Chowning, who had experimented with it at Stanford University since 1971.[303] Yamaha’s engineers began adapting Chowning’s algorithm for use in a commercial digital synthesizer, adding improvements such as the «key scaling» method to avoid the introduction of distortion that normally occurred in analog systems during frequency modulation.[304] In the 1970s, Yamaha were granted a number of patents, under the company’s former name «Nippon Gakki Seizo Kabushiki Kaisha», evolving Chowning’s early work on FM synthesis technology.[305] Yamaha built the first prototype digital synthesizer in 1974.[302]

Released in 1979,[306] the Casio VL-1 was the first commercial digital synthesizer.[307] selling for $69.95.[306] The first commercial FM digital synthesizer was the Yamaha GS-1 in 1980.[308]

The mainstream breakthrough for digital synthesis came with the 1983 release of the FM-based Yamaha DX7,[309] one of the best-selling synthesizers of all time.[310][303]

Vowel–consonant synthesis is a type of hybrid digital-analog synthesis developed by Casio and first employed by the early Casiotone keyboards in the early 1980s.[311]

Sequencer

In the early 1970s, Ralph Dyck, a Canadian composer and technologist, developed a prototype digital music sequencer, based on TTL digital circuitry, shift-register memory, and single-channel audio. There were no North American companies interested in his prototype, until Japanese company Roland Corporation took an interest in it. Roland founder Ikutaro Kakehashi saw the prototype, and decided to build a digital sequencer based on his prototype, making a number of major changes.[312][313] Kakehashi decided to replace the TTL circuitry with a microprocessor,[312][313] replace the small shift-register memory with larger RAM memory,[312][314] and increase the audio channels from a single channel to eight channels.[313] As Dyck was generally unfamiliar with how to use a microprocessor for a sequencer, Kakehashi hired Yukio Tamada to design and build a microprocessor-based sequencer.[312] Roland switched from discrete circuitry to the then brand new Intel 8080A 8-bit microprocessor and increased the memory from 512 bytes shift-register memory to 16 KB RAM memory, allowing storage of over 5,300 notes,[314][312] which could be entered via the calculator keyboard (the preferred method) or recorded in real-time (not so easy).

In 1977, Roland Corporation released the MC-8 Microcomposer, also called a computer music composer by Roland. It was the first standalone, microprocessor-based, digital CV/Gate music sequencer,[280][315][199] and an early polyphonic sequencer.[316][317] It introduced new features, such as a keypad to enter note information; 16 kilobytes of random access memory which allowed a maximum sequence length of 5200 notes, a huge step forward from the 8–16 step sequencers at the time;[318][319] the allocation of multiple pitch CVs to a single Gate channel, creating polyphonic parts within the overall sequence;[318] and eight-channel polyphony, allowing the creation of polyrhythmic sequences.[313]

The swingy funk element present throughout the Japanese synthpop album Yellow Magic Orchestra (1978) was expressed by Hideki Matsutake programming through subtle variations of the MC-8’s input.[320] Giorgio Moroder was another early commercial user of the MC-8, having used it from the late 1970s to the 1980s.[321] Other notable users include Ryuichi Sakamoto,[322][320] Altered Images, Chris Carter, Suzanne Ciani, Chris & Cosey, Kraftwerk, Landscape, The Human League, Martin Rushent, Pete Shelley, Tangerine Dream,[313] Richard James Burgess,[323] Vince Clarke,[324][313][325] Throbbing Gristle, Isao Tomita, Toto,[313] Yellow Magic Orchestra,[320][326][327] and Hans Zimmer.[313]

The MC-8 was the first in the Microcomposer family of sequencers, including the Roland MC-4 Microcomposer and Roland MC-202. The Roland MC-8 had a significant impact on electronic music, with the MC-8 and its descendants having more of an impact on electronic music production in the 1970s and 1980s than any other family of sequencers.[313] CV/Gate sequencers such as the MC-8 and MC-4 were eventually succeeded by MIDI sequencers in the 1980s.[199] The Microcomposer series continued with grooveboxes, including the Roland MC-202 (1983), MC-303 (1996), MC-505 (1998), MC-09 (1999), MC-307 (1999), MC-909 (2002) and MC-808 (2006).

Programmable drum machines (step sequencers)

Prior to Ikutaro Kakehashi’s founding of Roland Corporation in 1972, Kakehashi had discussed the idea of a programmable drum machine while at Ace Tone, some time between 1967 and 1972.[328] In 1975,[329] Ace Tone released the Rhythm Producer FR-15 that enables the modification of the pre-programmed rhythm patterns.[330]

1978 saw the release of the Roland CR-78, the first microprocessor programmable rhythm machine,[280][331] with four memory banks to store user patterns,[282] and controls for accents and muting.[331] Its combination of programmability and familiar preset rhythms made it popular from the late 1970s to the early 1980s, widely adopted by artists such as Blondie, Phil Collins, Ultravox,[282] Underworld, Fatboy Slim, BT, Gary Numan, 808 State, Peter Gabriel, Hall & Oates, Jimmy Edgar, Genesis, Überzone, Bryan Ferry, Men Without Hats, John Foxx and OMD.[332]

The Roland TR-808, released in 1980, was the first drum machine with the ability to program an entire percussion track of a song from beginning to end, complete with breaks and rolls.[333] It also includes volume knobs for each voice,[275] and has bass drum decay controls that could lengthen the sound to create uniquely low frequencies which flatten over long periods,[334] which can be used to create basslines[335] or bass drops.[336] The TR-808 became one of the most influential inventions in popular music,[337][335] used on more hit records than any other drum machine,[338] and shaping genres such as dance, electronic, hip hop and pop music.[276]

Bass synthesizer-sequencers

The first bass synthesizer with a music sequencer was the Firstman SQ-01.[339][340] It was originally released in 1980 by Hillwood/Firstman, a Japanese synthesizer company founded in 1972 by Kazuo Morioka (who later worked for Akai in the early 1980s), and was then released by Multivox for North America in 1981.[341][342][301] The most influential bass synthesizer-sequencer was the Roland TB-303, released in 1981, later becoming the basis of acid house music.[343]

Digital Control Bus (DCB) and DIN sync

In 1980, Roland Corporation introduced the Digital Control Bus (DCB) communications protocol, using the DIN sync interface to synchronize different electronic musical instruments. It was introduced with the Roland TR-808 in 1980, considered groundbreaking at the time, followed by other Roland equipment in 1981. It was the precursor to MIDI, which adopted most of its features from the DCB protocol, including the same type of connectors as the DIN sync interface.[275][344]

DCB was introduced in 1980 with the Roland TR-808, followed by other Roland equipment, including the CR-8000, TR-606, TB-303, EP-6060,[275] Jupiter-8, and Juno-60.[345] It uses DIN sync connectors, and DCB functions were basically the same as MIDI, which it was the basis for.[275]

DIN sync was introduced by Roland Corporation for the synchronization of music sequencers, drum machines, arpeggiators and similar devices, as part of the Digital Control Bus protocol. It was introduced in 1980 with the Roland TR-808, followed by other Roland equipment in 1981, including the CR-8000, TR-606, TB-303 and EP-6060. It was the basis for the MIDI interface, released in 1983, which eventually superseded it.[275] DIN sync was also adopted by non-Roland instruments, such as Linn Electronics’ LinnDrum.[213]

MIDI (Musical Instrument Digital Interface)

In 1981, Roland founder Ikutaro Kakehashi proposed the concept of standardization to Oberheim Electronics, Sequential Circuits, Yamaha, Korg and Kawai.[346] A common MIDI standard was developed, working with Roland’s pre-existing DCB as a basis,[275] by Roland, Yamaha, Korg, Kawai, and Sequential Circuits.[346][347]: 20  MIDI was publicly announced in 1982.[348]: 276  MIDI allowed communication between different instruments and general-purpose computers to play a role in music production.[199] Since its introduction, MIDI has remained the musical instrument industry standard interface through to the present day.[349] Kakehashi received the 2013 Technical Grammy Award for the invention of MIDI.[350][351]

PCM sampler

The first PCM digital sampler was Toshiba’s LMD-649,[352] created in 1981 by engineer Kenji Murata for Japanese electronic music band Yellow Magic Orchestra, who used it for extensive sampling and looping in their 1981 album Technodelic.[353]

MIDI instruments

The first MIDI synthesizers were the Roland Jupiter-6 and the Prophet 600, both released in 1982.[354][355] The first MIDI sequencer was Roland Corporation’s MSQ-700, released in 1983.[356] Sequential Circuits CEO Dave Smith demonstrated MIDI by connecting the Prophet 600 to a Jupiter-6 during the January 1983 Winter NAMM Show.[357]

While the Roland TR-808 was fully based on analog synthesis, the Roland TR-909, released in 1983, combined analogue synthesis with digital sampling.[358] It was also the first MIDI drum machine.[354][355] Much like the TR-808’s importance to hip hop, the TR-909 holds a similar important for electronic dance music, such as techno and house music.[277][278] For example, the seminal deep house track «Can You Feel It» (1986) was produced using the Roland Juno-60 polyphonic synthesizer for the bassline and the TR-909 rhythm machine for the drumline.[359][360]

USB drum MIDI controllers are often designed to resemble popular classic drum machines such as the Roland TR-808 and Akai MPC.[361]

Groovebox

The Roland MC-202, released in 1983, was the first groovebox. The term «groovebox» was later coined by Roland Corporation in reference to its successor, the Roland MC-303, released in 1996.[362]

Wind synths

From the mid-1980s, Akai developed a range of wind synths. Their EWI-1000 wind controller and EVI-1000 valve controller, like the Lyricon, were paired with a dedicated analog, voltage-controlled voice module, the EWV-2000. The EWV-2000 had no MIDI IN, though it did have MIDI OUT. The EWI-1000/EWV-2000 pair were actually a hybrid digital/analog system. Analog signals were derived from the various sensors (e.g., key, bite, bend, etc.) on the EWI-1000 controller unit, then converted to digital signals by a front-end microprocessor in the EWV-2000. These digital signals were then altered by the microprocessor and D/A converted to internal analog control voltages appropriate for the analog synthesizer IC’s within the EWV-2000. The D/A used within the EWV-2000 used a very high resolution and conversion rate, such that the responsiveness to the player felt immediate, i.e. «analog.» The subsequent EWI-3000 and EWI-3020 systems also used this A/D/A scheme within their dedicated tone modules, though these later models of the EWI would support MIDI IN and OUT.

Linear Arithmetic synthesis

Linear Arithmetic synthesis (LA synthesis) is a type of sound synthesis invented by Roland Corporation, introduced with the Roland D-50 synthesizer in 1987.[348]: 434  LA synthesis was since used by a number of other Roland equipment, such as the MT-32 sound module in 1987 and the E-20 synthesizer in 1988.

The Roland D-50 is a polyphonic 61-key digital synthesizer, produced by Roland and released in 1987. Its features include Linear Arithmetic synthesis, on-board effects, a joystick for data manipulation, and an analogue synthesis-styled layout design. It was also produced in a rack-mount variant design, the D-550 (1987–1990), with almost 450 user-adjustable parameters.[363] The D-50 saw widespread use in popular music, with a distinctive sound that largely defined popular late 1980s music.[363] Today, the D-50 is still highly popular as affordable vintage synth. It has the highest score by users of all synths at VintageSynth.[364] The D-50 was the first affordable synthesizer to combine sample playback with digital synthesis, a process that Roland called Linear Arithmetic synthesis.

Memory[edit]

Magnetic disks

What may have been the idea of the first floppy disk, or magnetic disk sheet, was invented by Yoshiro Nakamatsu at the Tokyo Imperial University in 1950.[365][366] He received a Japanese patent in 1952,[367][368] and a 1958 American patent, for a magnetic disk record sheet.[369] Nippon Columbia planned to commercialized his magnetic disc sheet recorder in 1960.[370] He licensed a number of patents to IBM,[367][371][372] reaching licensing agreements with them in the 1970s.[365][373][374]

Sony introduced the 3½-inch floppy disk format, called the micro floppy disk. The first commercial micro floppy disk drive was the Sony OA-D30V, released in 1981.[375] Sony’s initial 3½-inch floppy disk format was dual-sided and held 875 KB of data storage.

In 1990, Toshiba’s MK1122FC was the first hard disk drive to use a glass hard disk drive platter, replacing the earlier aluminium platters. Glass platters had several advantages, such as greater shock resistance, compared to aluminium platter.[376]

Random-access memory (RAM)

The Toshiba Toscal BC-1411 electronic calculator, which debuted in 1965,[377][378] introduced an early form of dynamic random-access memory (DRAM) built from discrete components.[378]

By 1986, NEC and AMD were manufacturing 32 KB VRAM (Video RAM) chips, compared to Texas Instruments which were manufacturing 8 KB VRAM chips at the time.[379]

Optical discs

The compact disc (CD) format was developed by Sony and Philips in 1979, and commercially released in 1982. The CD-ROM format was developed by Japanese company Denon in 1982. It was an extension of Compact Disc Digital Audio, and adapted the format to hold any form of digital data, with a storage capacity of 553 MiB.[380] CD-ROM was then introduced by Denon and Sony at a Japanese computer show in 1984.[196]

In 1984, Sony introduced a LaserDisc format that could store any form of digital data, as a data storage device similar to CD-ROM, with a larger capacity of 3.28 GiB.[196] The DVD format was developed by Sony, Panasonic and Toshiba in 1994. The same year, Sony and Tatung Company released the first DVD player.

Flash memory

Flash memory (both NOR and NAND types) was invented by Dr. Fujio Masuoka while working for Toshiba around 1980.[381][382]

Metallurgy[edit]

Mitsubishi process

Developed by the Mitsubishi Heavy Industries and superior to the conventional process, it is a continuous copper smelting and converting process comprising three steps—smelting of raw materials by injection, separation of slag and matte, and direct converting of high-grade matte. Since commercial operation began in 1974, the hearth productivity has been doubled, and several other improvements have been made, including higher-grade matte smelting and the treatment of various secondary materials.[383]

Printing[edit]

Electronic printer

The first electronic printer was the EP-101, invented by Japanese company Epson and released in 1968.[384][385]

Inkjet printer

The world’s first inkjet printer was Casio’s Typuter, released in 1971.[108]

Thermal transfer printing

Invented by SATO corporation,[386] a Japanese company.[387] They produced the world’s first thermal transfer label printer, SATO M-2311, in 1981.[386]

3D printing

In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter.[388][389]

Hydrographics

Hydrographics, also known variously as immersion printing, water transfer printing, water transfer imaging, hydro dipping, or cubic printing has an somewhat fuzzy history. Three different Japanese companies are given credit for its invention. Taica Corporation claims to have invented cubic printing in 1974. However, the earliest hydrographic patent was filed by Motoyasu Nakanishi of Kabushiki Kaisha Cubic Engineering in 1982.[390]

Textiles[edit]

Timekeeping[edit]

Automatic quartz

The first watch to combine self-winding with a crystal oscillator for timekeeping was unveiled by Seiko in 1986.[391]

Quartz wristmatch

The world’s first quartz wristwatch was revealed in 1967: the prototype of the Astron revealed by Seiko in Japan, where it was in development since 1958. It was eventually released to the public in 1969.[392]

Spring Drive

A watch movement which was first conceived by Yoshikazu Akahane working for Seiko in 1977 and was patented in 1982. It features a true continuously sweeping second hand, rather than the traditional beats per time unit, as seen with traditional mechanical and most quartz watches.[393]

Video[edit]

Video tape

Dr. Norikazu Sawazaki invented a prototype video tape recorder in 1953, based on helical scan technology.[394]

Video disc

In Japan, the TOSBAC computer was using digital video disks to display color pictures at 256×256 image resolution in 1972.[395]

In 1975, Hitachi introduced a video disc system in which chrominance, luminance and sound information were encoded holographically. Each frame was recorded as a 1mm diameter hologram on a 305mm disc, while a laser beam read out the hologram from three angles.[396] In 1978, Hitachi invented a digital video storage system, which they received a patent for.[397]

In the late 1970s to the early 1980s, several types of video production equipment that were digital in their internal workings were introduced, including digital video effects (DVE) units such as the Nippon Electric Corporation (NEC) DVE.

Other[edit]

Artificial snowflake

The first artificial snowflake was created by Japanese physicist Ukichiro Nakaya in 1936, three years after his first attempt.[398]

Rollerball pen

The first rollerball pen was invented in 1963 by the Japanese company Ohto.[399]

References[edit]

  1. ^ Fukui, Kenichi; Yonezawa, Teijiro; Shingu, Haruo (1952). «A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons». The Journal of Chemical Physics. 20 (4): 722. Bibcode:1952JChPh..20..722F. doi:10.1063/1.1700523.
  2. ^ Fukui, K (November 1982). «Role of Frontier Orbitals in Chemical Reactions». Science. 218 (4574): 747–754. Bibcode:1982Sci…218..747F. doi:10.1126/science.218.4574.747. PMID 17771019. S2CID 268306.
  3. ^ Fukui, K.; Yonezawa, T.; Shingu, H. (1952). «A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons». The Journal of Chemical Physics. 20 (4): 722. Bibcode:1952JChPh..20..722F. doi:10.1063/1.1700523.
  4. ^ Bell J, Johnstone B, Nakaki S: The new face of Japanese science. New Scientist, 21 March 1985, p. 31.
  5. ^ Sri Kantha S: Kenichi Fukui. In, Biographical Encyclopedia of Scientists, edited by Richard Olson, Marshall Cavendish Corp, New York, 1998, pp. 456–458.[ISBN missing]
  6. ^ The Chemical Intelligencer 1995, 1(2), 14–18, Springer-Verlag, New York, Inc.[full citation needed]
  7. ^ «Biographical Snapshots | Chemical Education Xchange». Jce.divched.org. Retrieved 2015-11-09.
  8. ^ «Kenichi Fukui – Biographical». Nobelprize.org. Retrieved 2015-11-09.
  9. ^ «The Nobel Prize in Chemistry 2001». Nobel Foundation. Retrieved 2009-12-19.
  10. ^ «The Nobel Prize in Chemistry 2001».
  11. ^ Shimomura O, Johnson FH, Saiga Y (June 1962). «Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea». Journal of Cellular and Comparative Physiology. 59 (3): 223–39. doi:10.1002/jcp.1030590302. PMID 13911999.
  12. ^ «The Nobel Prize in Chemistry 2008». Nobel Foundation. Retrieved 2015-08-24.
  13. ^ «The Nobel Prize in Chemistry 2002». Nobel Foundation. Retrieved 2009-12-19.
  14. ^ «The Nobel Prize in Chemistry 2002».
  15. ^ «The Nobel Prize in Chemistry 2000». Nobel Foundation. Retrieved 2009-12-19.
  16. ^ a b c Radomir S. Stanković (University of Niš), Jaakko T. Astola (Tampere University of Technology), Mark G. Karpovsky (Boston University), Some Historical Remarks on Switching Theory, 2007, DOI 10.1.1.66.1248
  17. ^ a b c d e Stanković, Radomir S. [in German]; Astola, Jaakko Tapio [in Finnish], eds. (2008). Reprints from the Early Days of Information Sciences: TICSP Series on the Contributions of Akira Nakashima to Switching Theory (PDF). Tampere International Center for Signal Processing (TICSP) Series. Vol. 40. Tampere University of Technology, Tampere, Finland. ISBN 978-952-15-1980-2. ISSN 1456-2774. Archived from the original (PDF) on 2021-03-08. (3+207+1 pages) 10:00 min
  18. ^ Hozumi N, Tonegawa S (1976). «Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions». Proc. Natl. Acad. Sci. U.S.A. 73 (10): 3628–3632. Bibcode:1976PNAS…73.3628H. doi:10.1073/pnas.73.10.3628. PMC 431171. PMID 824647.
  19. ^ «The Nobel Prize in Physiology or Medicine 1987». Nobel Foundation. Retrieved 2009-12-19.
  20. ^ The Noble Foundation (1949) Nobel Prize in Physics 1949 – Presentation Speech
  21. ^ Nambu, Yoichiro (2008). Karl Grandin (ed.). «Les Prix Nobel – The Nobel Prizes 2008». Stockholm: The Nobel Foundation. Archived from the original on 2014-10-11. Retrieved 2015-07-19.
  22. ^ a b M. Kobayashi; T. Maskawa (1973). «CP-Violation in the Renormalizable Theory of Weak Interaction». Progress of Theoretical Physics. 49 (2): 652–657. Bibcode:1973PThPh..49..652K. doi:10.1143/PTP.49.652.
  23. ^ «Top Cited Articles of All Time (2010 edition)». SLAC. 2009. Retrieved 2014-06-21.
  24. ^ The Nobel Prize in Physics 2008, The Nobel Foundation, retrieved 2009-10-17
  25. ^ Esaki, Leo, «Long Journey into Tunneling,» Nobel Lecture, 12 December 1973.
  26. ^ a b Esaki, Leo (1958-01-15). «New Phenomenon in Narrow Germanium p-n Junctions». Physical Review. 109 (2): 603–604. Bibcode:1958PhRv..109..603E. doi:10.1103/PhysRev.109.603.
  27. ^ Diode type semiconductor device United States patent 3,033,714
  28. ^ Esaki, L.; Kurose, Y.; Suzuki, T. (1957). «Ge P–N Junction のInternal Field Emission». 日本物理学会年会講演予稿集. 12 (5): 85.
  29. ^ Sony History – Chapter 9 The Model 2T7 Transistor
  30. ^ «The Nobel Prize in Physics 1965». Nobel Foundation. Retrieved 2009-12-19.
  31. ^ «The Nobel Prize in Physics 2002». Nobel Foundation. Retrieved 2009-12-19.
  32. ^ Pagliaroli, G.; Vissani, F.; Costantini, M. L.; Ianni, A. (2009). «Improved analysis of SN1987A antineutrino events». Astroparticle Physics. 31 (3): 163–176. arXiv:0810.0466. Bibcode:2009APh….31..163P. doi:10.1016/j.astropartphys.2008.12.010. S2CID 119089069.
  33. ^ Davenport, Christian (2010). «Rashomon Effect, Observation, and Data Generation». Media Bias, Perspective, and State Repression: The Black Panther Party. Cambridge, UK: Cambridge University Press. pp. 52–73, esp. 55. ISBN 9780521759700.
  34. ^ «Japanese Patents and Inventions». Nature. 135 (3406): 218. February 1935. Bibcode:1935Natur.135R.218.. doi:10.1038/135218b0. S2CID 4105301.
  35. ^ a b Kudo, Akira (2012). Japanese-German Business Relations Co-operation and Rivalry in the Interwar Period. Routledge. ISBN 978-0-203-01851-4. OCLC 7385499096.[page needed]
  36. ^ Rose, Anthony (2018). Sake and the wines of Japan. Oxford: Infinite Ideas. ISBN 978-1-906821-62-3. OCLC 1130842600.[page needed]
  37. ^ Ashcraft, Brian (2020). The Japanese Sake Bible: Everything You Need to Know About Great Sake With Tasting Notes & Scores for 100 Top Brands. Tuttle Publishing. OCLC 1191809938.[page needed]
  38. ^ «BAJ Website | The history of the battery : 1) The Yai dry-battery». baj.or.jp. Retrieved 2020-12-29.
  39. ^ «(3)企業の成長と内国勧業博覧会の終焉 | 第3部 出展品からみる明治日本の産業 | 博覧会―近代技術の展示場». ndl.go.jp (in Japanese). Retrieved 2020-12-30.
  40. ^ «【1917 to 1944】Transformation to a Modern Company | Visionary | Shimadzu Corporation». shimadzu.com. Retrieved 2020-12-30.
  41. ^ «1894 (Meiji 27) onwards | History | Visionary | Shimadzu Corporation». shimadzu.com. Retrieved 2020-12-30.
  42. ^ «The dream of «Made in Japan» | Visionary | Shimadzu Corporation». shimadzu.com. Retrieved 2020-12-30.
  43. ^ a b «Milestones:Development of Electronic Television, 1924–1941». Retrieved 2015-12-11.
  44. ^ Kenjiro Takayanagi: The Father of Japanese Television, NHK (Japan Broadcasting Corporation), 2002, retrieved 2009-05-23.
  45. ^ High Above: The untold story of Astra, Europe’s leading satellite company, p. 220, Springer Science+Business Media
  46. ^ Albert Abramson, Zworykin, Pioneer of Television, University of Illinois Press, 1995, p. 231. ISBN 0-252-02104-5.
  47. ^ (PDF) https://www.ieice.org/eng_r/assets/pdf/publication/milestone/b60-62.pdf.
  48. ^ Quan, Guan (2001). «Technological Innovations and the Patent System in Prewar Japan». Hitotsubashi Journal of Commerce and Management. 36 (1 (36)): 19–36. JSTOR 43294983.
  49. ^ (PDF) https://dl.cdn-anritsu.com/en-en/about-anritsu/corporate-information/track/footprint120.pdf.
  50. ^ Nagaoka, Hantaro (1929). «Possibility of the Radio Transmission being disturbed by Meteoric Showers». Proceedings of the Imperial Academy. 5 (6): 233–236. doi:10.2183/pjab1912.5.233.
  51. ^ «The Yagi-Uda Antenna – Yagi Antennas». antenna-theory.com. Retrieved 2020-12-30.
  52. ^ «Photo-telegraph service introduced (NE-type)». park.org. Retrieved 2020-12-30.
  53. ^ Yang, Daqing (2010). Technology of empire: telecommunications and Japanese expansion in Asia, 1883-1945. Vol. 219. Cambridge, Mass: Harvard University Asia Center : Distributed by Harvard University Press. doi:10.2307/j.ctt1tg5mft. ISBN 978-1-68417-379-2. JSTOR j.ctt1tg5mft. OCLC 1001536884.[page needed]
  54. ^ Yamada, Akihiko (2004). «History of Research on Switching Theory in Japan». IEEJ Transactions on Fundamentals and Materials. 124 (8): 720–726. Bibcode:2004IJTFM.124..720Y. doi:10.1541/ieejfms.124.720.
  55. ^ a b c Switching Theory/Relay Circuit Network Theory/Theory of Logical Mathematics, IPSJ Computer Museum, Information Processing Society of Japan
  56. ^ a b 【Electrotechnical Laboratory】 ETL Mark I Relay-Based Automatic Computer, Information Processing Society of Japan
  57. ^ a b c d e f g Early Computers: Brief History, Information Processing Society of Japan
  58. ^ Turner, Laurence Beddome (2013) [1931]. Wireless : a treatise on the theory and practice of high-frequency electric signalling / monograph. Cambridge: Cambridge University Press. ISBN 978-1-107-63618-7. OCLC 907253099.[page needed]
  59. ^ a b 一時代を画する新楽器完成 浜松の青年技師山下氏 [An epoch new musical instrument was developed by a young engineer Mr.Yamashita in Hamamatsu]. Hochi Shimbun (in Japanese). 1935-06-08.
  60. ^ a b 新電氣樂器 マグナオルガンの御紹介 [New Electric Musical Instrument – Introduction of Magna Organ] (in Japanese). Hamamatsu: 日本樂器製造株式會社 (Yamaha). October 1935. 特許第一〇八六六四号, 同 第一一〇〇六八号, 同 第一一一二一六号
  61. ^ «Toshiba Science Museum : Trial Production of the World’s First Double-Coil Bulb». toshiba-mirai-kagakukan.jp. Retrieved 2020-12-30.
  62. ^ Honda, Kōtarō (1928). Magnetic properties of matter (1st ed.). Tokyo, Japan: Syokwabo and Company.
  63. ^ a b Yonekura, Seiichirō (2002). The Japanese iron and steel industry, 1850-1990 continuity and discontinuity. Basingstoke: Palgrave Macmillan. ISBN 978-0-333-61131-9. OCLC 1073544154.[page needed]
  64. ^ «Tokushichi Mishima Dies; Invented a Magnetic Steel». The New York Times. 1975-11-21.
  65. ^ «Permanent magnet containing copper» (PDF). freepatentsonline.com. Retrieved 2020-12-30.
  66. ^ a b Semiconductor Technologies, Ohmsha, 1982
  67. ^ Yonekura, Seiichirō, 1953- (1994). The Japanese iron and steel industry, 1850-1990 : continuity and discontinuity. New York: St Martin’s Press. ISBN 0-312-10673-4. OCLC 28797848.{{cite book}}: CS1 maint: multiple names: authors list (link)[page needed]
  68. ^ «北九州イノベーションギャラリー|Kitakyushu Innovation Gallery & Studio [KIGS]». kigs.jp. Retrieved 2020-12-31.
  69. ^ «IJN Hosho Light Aircraft Carrier». www.globalsecurity.org. Retrieved 2020-12-30.
  70. ^ Watts, Anthony John (1967). Japanese warships of World War II. OCLC 251618693.[page needed]
  71. ^ Murray, Williamson; Millet, Alan R. (1998). Military innovation in the interwar period (1st paperback ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-26688-9. OCLC 852896224.[page needed]
  72. ^ Brown, D. K (2006). Nelson to Vanguard: warship development, 1923–1945. London: Chatham. ISBN 978-1-59114-602-5. OCLC 173973193.[page needed]
  73. ^ Zaloga, Steve; Bull, Peter (2007). Japanese tanks : 1939–45. Oxford: Osprey. ISBN 978-1-84603-091-8. OCLC 132312488.[page needed]
  74. ^ Brown, David (1990). Warship losses of World War Two. London: Arms and Armour. ISBN 0-85368-802-8. OCLC 23052489.[page needed]
  75. ^ Ryōtarō, Shiba (2013). Birnbaum, Phyllis (ed.). Clouds above the Hill. doi:10.4324/9780203068724. ISBN 978-0-203-06872-4.[page needed]
  76. ^ Evans, David C.; Peattie, Mark R. (2015-01-15). Kaigun : strategy, tactics, and technology in the Imperial Japanese Navy, 1887–1941. Annapolis, Md. ISBN 978-1-61251-425-3. OCLC 897464699.[page needed]
  77. ^ Evans, David C.; Peattie, Mark R. (2015-01-15). Kaigun : strategy, tactics, and technology in the Imperial Japanese Navy, 1887–1941. Annapolis, Md. ISBN 978-1-61251-425-3. OCLC 897464699.[page needed]
  78. ^ Brook, Peter (1999). Warships for export : Armstrong warships, 1867–1927. Gravesend, Kent: World Ship Society. ISBN 0-905617-89-4. OCLC 43148897.[page needed]
  79. ^ Evans, David C.; Peattie, Mark R. (2015-01-15). Kaigun : strategy, tactics, and technology in the Imperial Japanese Navy, 1887–1941. Annapolis, Md. ISBN 978-1-61251-425-3. OCLC 897464699.[page needed]
  80. ^ Howe, Christopher (1996). The origins of Japanese trade supremacy: development and technology in Asia from 1540 to the Pacific War. Chicago: University of Chicago Press. ISBN 0-226-35485-7. OCLC 31971500.[page needed]
  81. ^ Evans, David C (2012). Kaigun: strategy, tactics, and technology in the imperial Japanese navy 1887-1941. Place of publication not identified: Seaforth Publishing. ISBN 978-1-84832-159-5. OCLC 939027390.[page needed]
  82. ^ a b Pleshakov, Konstantin (2008). The tsar’s last armada: the epic journey to the Battle of Tsushima. New York: Basic Books. ISBN 978-0-7867-2549-6. OCLC 818855512.
  83. ^ «Shimose, Masachika | Portraits of Modern Japanese Historical Figures». ndl.go.jp. Retrieved 2020-12-31.
  84. ^ McNab, Chris; Noon, Steve; Gilliland, Alan (2015). The flamethrower. ISBN 978-1-4728-0902-5. OCLC 929030814.[page needed]
  85. ^ «The Story of Sakichi Toyoda | Toyota Industries Corporation». toyota-industries.com. Retrieved 2020-12-29.
  86. ^ «コラム 明治の特許制度 | 第1部 1900年までに開催された博覧会 | 博覧会―近代技術の展示場». ndl.go.jp (in Japanese). Retrieved 2020-12-31.
  87. ^ Choi, Eugene K. (2011). «Another Spinning Innovation: The Case of the Rattling Spindle, Garabō, in the Development of the Japanese Spinning Industry». Australian Economic History Review. 51 (1): 22–45. doi:10.1111/j.1467-8446.2011.00323.x. OCLC 6896286227.
  88. ^ Sakurada, Ichiro (1951). «Synthetic Fiber». Journal of Synthetic Organic Chemistry, Japan. 9 (9): 163–167. doi:10.5059/yukigoseikyokaishi.9.9_163.
  89. ^ Fraser, K.C. (2013-03-22). «Historical Dictionary of the Democratic People’s Republic of Korea2013123James E. Hoare. Historical Dictionary of the Democratic People’s Republic of Korea . Lanham, MD, and Plymouth: Scarecrow Press 2012. lxi+490 pp., ISBN: 978 0 8108 6151 0 (print); 978 0 8108 7987 4 (e‐book) £75; $119 Historical Dictionaries of Asia, Oceania and the Middle East». Reference Reviews. 27 (3): 58. doi:10.1108/09504121311308903.
  90. ^ a b c d e The Third Industrial Revolution Occurred in Sendai, Soh-VEHE International Patent Office, Japan Patent Attorneys Association
  91. ^ «Are Patents Indicative of Chinese Innovation?». ChinaPower Project. 2016-02-15. Retrieved 2021-04-16.
  92. ^ a b Fine, Thomas (2008). Barry R. Ashpole (ed.). «The Dawn of Commercial Digital Recording» (PDF). ARSC Journal. Retrieved 2010-05-02.
  93. ^ «How the CD was developed». BBC News. 2007-08-17. Retrieved 2007-08-17.
  94. ^ Klatt, D (1987). «Review of text-to-speech conversion for English». Journal of the Acoustical Society of America. 82 (3): 737–93. Bibcode:1987ASAJ…82..737K. doi:10.1121/1.395275. PMID 2958525.
  95. ^ Billboard, 21 May 1977, p. 140
  96. ^ a b Brian Coleman, The Technics 1200 — Hammer Of The Gods, Medium
  97. ^ a b c d Trevor Pinch, Karin Bijsterveld, The Oxford Handbook of Sound Studies, p. 515, Oxford University Press
  98. ^ «History of the Record Player Part II: The Rise and Fall». Reverb.com. October 2015. Retrieved 2016-06-05.
  99. ^ a b c d e Six Machines That Changed The Music World, Wired, May 2002
  100. ^ The World of DJs and the Turntable Culture, p. 43, Hal Leonard Corporation, 2003
  101. ^ «Rane.com». Archived from the original on 2009-08-10. Retrieved 2017-06-02.
  102. ^ Hormby, Thomas (2006-09-15). «The Story Behind the Sony Walkman». Low End Mac. Retrieved 2007-03-04.
  103. ^ a b «Shinkansen Chronology». 2009-02-15. Archived from the original on 2009-02-15. Retrieved 2020-12-30.
  104. ^ «Minicars: Cheap and Cheerful», Peter Nunn, JAMA, January–February 2005
  105. ^ «Owning a Car in Japan» Archived 8 February 2012 at the Wayback Machine, ALTs in Sendai
  106. ^ «Keywords to understanding Sony Energy Devices|Sony Energy Devices Corporation». 2016-03-04. Archived from the original on 2016-03-04. Retrieved 2020-12-29.
  107. ^ «Casio 14-A». It History Society. 2015-12-15.
  108. ^ a b c d Chronology of Main Products, Casio
  109. ^ History of Casio, Casio, 2014
  110. ^ «Casio AL-1000».
  111. ^ Rick Bensene. «Sharp QT-8D Electronic Calculator». The Old Calculator Web Museum. Retrieved 2010-09-29.
  112. ^ «Sharp History – 1969–1970: From Senri to Tenri». SHARP World. Sharp Corporation. Retrieved 2010-09-30.
  113. ^ a b Nigel Tout. «Sharp QT-8D «micro Compet»«. Vintage Calculators Web Museum. Retrieved 2010-09-29.
  114. ^ Nigel Tout. «Sharp QT-8B «micro Compet»«. Vintage Calculators Web Museum. Retrieved 2010-10-02.
  115. ^ a b c d e f Aspray, William (1994-05-25). «Oral-History: Tadashi Sasaki». Interview No. 211 for the Center for the History of Electrical Engineering. The Institute of Electrical and Electronics Engineers, Inc. Retrieved 2013-01-02.
  116. ^ «The one-chip calculator is here, and it’s only the beginning», Electronic Design, 18 February 1971, p. 34
  117. ^ a b c d e f g h i j k Masatoshi Shima, IEEE
  118. ^ a b c d e Nigel Tout. «The Busicom 141-PF calculator and the Intel 4004 microprocessor». Retrieved 2009-11-15.
  119. ^ a b c Note on the Liquid Crystal Display Industry, Auburn University, 1995
  120. ^ Michael R. Peres (2013), The Focal Encyclopedia of Photography, p. 779, Taylor & Francis
  121. ^ Shapiro, Mark (2006). «The History of Camcorders». San Diego, CA: Internet Video Magazine. Archived from the original on 2012-11-21. Retrieved 2009-12-27.
  122. ^ Nikon SLR-type digital cameras, Pierre Jarleton
  123. ^ a b David D. Busch (2011), Nikon D70 Digital Field Guide, p. 11, John Wiley & Sons
  124. ^ The long, difficult road to Pentax full-frame The long, difficult road to Pentax full-frame, Digital Photography Review
  125. ^ British Journal of Photography, Issues 7410–7422, 2003, p. 2
  126. ^ Canon EOS-1Ds, 11 megapixel full-frame CMOS, Digital Photography Review
  127. ^ Amit Dhir (2004), The Digital Consumer Technology Handbook: A Comprehensive Guide to Devices, Standards, Future Directions, and Programmable Logic Solutions, p. 263, Elsevier
  128. ^ a b David Buckingham, Rebekah Willett, Maria Pini (2011), Home Truths? Video Production and Domestic Life, p. 9, University of Michigan Press
  129. ^ «Separate camera and recorder; First VHS-C camcorder». 2007-09-14. Retrieved 2007-09-14.
  130. ^ «Evolution of the Camera phone: From Sharp J-SH04 to Nokia 808 Pureview». Hoista.net. 2012-02-28. Retrieved 2013-06-21.
  131. ^ Berga, Luis (2018). RCC Dams – Roller Compacted Concrete Dams: Proceedings of the IV International Symposium on Roller Compacted Concrete Dams, Madrid, Spain, 17-19 November 2003- 2 Vol set. ISBN 978-1-351-41978-9. OCLC 1147834277.
  132. ^ Nakane, T. (1992-09-05). «NSP kiln. NSP kiln». Kagaku Kogaku (Chemical Engineering); (Japan) (in Japanese). 56:9.
  133. ^ Nishizawa, Jun-ichi & Suto, Ken (2004). «Terahertz wave generation and light amplification using Raman effect». In Bhat, K. N. & DasGupta, Amitava (eds.). Physics of semiconductor devices. New Delhi, India: Narosa Publishing House. p. 27. ISBN 978-81-7319-567-9.
  134. ^ «Optical Fiber». Sendai New. Archived from the original on 2009-09-29. Retrieved 2009-04-05.
  135. ^ «New Medal Honors Japanese Microelectrics Industry Leader». Institute of Electrical and Electronics Engineers.
  136. ^ a b c d Semiconductor Technologies, p. 338, Ohmsha, 1982
  137. ^ a b Johnstone, Bob (2000). We were burning: Japanese entrepreneurs and the forging of the electronic age. New York: BasicBooks. ISBN 9780465091188.
  138. ^ S. Millman (1983), A History of Engineering and Science in the Bell System, p. 10 Archived 26 October 2017 at the Wayback Machine, AT&T Bell Laboratories
  139. ^ Kurita, Nakano, Lee. «Why and how I created emoji». Ignition. Archived from the original on 2016-06-10. Retrieved 2016-07-01.{{cite web}}: CS1 maint: multiple names: authors list (link)
  140. ^ Information Processing Society of Japan – Parametron
  141. ^ Rojas, Rául; Hashagen, Ulf (2002). The First Computers: History and Architectures. Cambridge, Massachusetts: MIT Press. p. 429. ISBN 978-0-262-68137-7.
  142. ^ Takahashi, S. (1959-03-01). «Development of Japanese Digital Computers». The Computer Journal. 2 (3): 122–129. doi:10.1093/comjnl/2.3.122.
  143. ^ Martin Fransman (1993), The Market and Beyond: Cooperation and Competition in Information Technology, p. 19, Cambridge University Press
  144. ^ a b c Early Computers, Information Processing Society of Japan
  145. ^ 【Electrotechnical Laboratory】 ETL Mark III Transistor-Based Computer, Information Processing Society of Japan
  146. ^ 【Electrotechnical Laboratory】 ETL Mark IV Transistor-Based Computer, Information Processing Society of Japan
  147. ^ 【Electrotechnical Laboratory】 ETL Mark IV A Transistor-Based Computer, Information Processing Society of Japan
  148. ^ a b c Hitachi and Japanese National Railways MARS-1, Information Processing Society of Japan
  149. ^ 【Kyoto University,Toshiba】 KT-Pilot, Information Processing Society of Japan
  150. ^ Office Computers: Brief History, Information Processing Society of Japan
  151. ^ 【NEC】 NEAC-1240, Information Processing Society of Japan
  152. ^ a b c Shimazu, Takehito (1994). «The History of Electronic and Computer Music in Japan: Significant Composers and Their Works». Leonardo Music Journal. 4: 102–106 [104]. doi:10.2307/1513190. JSTOR 1513190. S2CID 193084745. Retrieved 2012-07-09.
  153. ^ Running Cola is Africa (retrieved 20 April 2012)
  154. ^ Computer Technique Group (retrieved 20 April 2012)
  155. ^ a b c d e f g Federico Faggin, The Making of the First Microprocessor, IEEE Solid-State Circuits Magazine, Winter 2009, IEEE Xplore
  156. ^ Agreement between Intel & NCM
  157. ^ a b «NEC 751 (uCOM-4)». The Antique Chip Collector’s Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  158. ^ a b c 1970年代 マイコンの開発と発展 ~集積回路, Semiconductor History Museum of Japan
  159. ^ Jeffrey A. Hart & Sangbae Kim (2001), The Defense of Intellectual Property Rights in the Global Information Order Archived 16 April 2017 at the Wayback Machine, International Studies Association, Chicago
  160. ^ Ogdin, Jerry (January 1975). «Microprocessor scorecard». Euromicro Newsletter. 1 (2): 43–77. doi:10.1016/0303-1268(75)90008-5.
  161. ^ a b Integrated Circuits: 1970s, Semiconductor History Museum of Japan
  162. ^ a b c Shima Masatoshi, Information Processing Society of Japan
  163. ^ a b c d e 【Sord】 SMP80/x series, Information Processing Society of Japan
  164. ^ US patent 4,010,449, Federico Faggin, Masatoshi Shima, Stanley Mazor, «MOS computer employing a plurality of separate chips», issued 1 March 1977
  165. ^ a b «History». PFU. Retrieved 2010-10-05.
  166. ^ a b PANAFACOM Lkit-16, Information Processing Society of Japan
  167. ^ «16-bit Microprocessors». CPU Museum. Retrieved 2010-10-05.
  168. ^ «Hitachi Releases the SH-4 SH7750 Series, Offering Industry’s Highest Performance of 360 MIPS for an Embedded RISC Processor, as Top-End Series in SuperH Family».
  169. ^ a b Nathan Willis (2015-06-10). «Resurrecting the SuperH architecture». LWN.net.
  170. ^ a b Michael Katz, Robert Levering, Milton Moskowitz (1985), Computer Entrepreneur, p. 469, Penguin Group
  171. ^ Michael Katz, Robert Levering, Milton Moskowitz (1985), Computer Entrepreneur, p. 463, Penguin Group
  172. ^ 【Sord】 M200 Smart Home Computer Series, Information Processing Society of Japan
  173. ^ a b «Video interview with Yash Terakura | Scene World – The C64 NTSC/PAL Disk Magazine». Sceneworld.org. Retrieved 2015-12-30.
  174. ^ The Game Machines: The Ultimax/Max Machine, 64GS, 64CGS
  175. ^ Classic Videogame Hardware Genius Guide, p. 230, Imagine Publishing
  176. ^ «Computing Japan». Computing Japan. 54–59: 18. 1999. Retrieved 2012-02-06. …its venerable PC 9800 series, which has sold more than 18 million units over the years, and is the reason why NEC has been the number one PC vendor in Japan for as long as anyone can remember.
  177. ^ «Brutal Deluxe Software».
  178. ^ «Projects and Articles – Retrieving Japanese Apple II programs». Archived from the original on 2016-10-05. Retrieved 2017-05-23.
  179. ^ «LINKS-1 Computer Graphics System-Computer Museum».
  180. ^ Micro Computer Basic Master MB-6880 Music method[permanent dead link]Kunihiko (圀彦), Nagai (長井); Teruhiro (輝洋), Takezawa (竹澤); Kazuma (一馬), Yoshimura (吉村); KaTsutoshi (活利), Tajima (田島) (1979-04-26). «Hitachi Hyoron April 1979 Special Features:A micro-computer, the application method». digital.hitachihyoron. HITACHI. Archived from the original on 2015-05-08. Retrieved 2013-08-26.
  181. ^ Today’s PC is yesterday’s graphics workstation, The Inquirer
  182. ^ «uPD7220/uPD7220A User Manual, December 1985» (PDF). Archived from the original (PDF) on 2012-06-16. Retrieved 2017-05-24.
  183. ^ Norman Einspruch (2012), VLSI Handbook, p. 728, Academic Press
  184. ^ a b Jon Peddie, The History of Visual Magic in Computers: How Beautiful Images are Made in CAD, 3D, VR and AR, pp. 225–226, Springer Science+Business Media
  185. ^ Tetsuji Oguchi; Misao Higuchi; Takashi Uno; Michiori Kamaya; Munekazu Suzuki (February 1981). «A Single-chip Graphic Display Controller» (PDF). International Solid State Circuit Conference: 170–171. doi:10.1109/ISSCC.1981.1156160. S2CID 20765458.
  186. ^ a b F. Robert A. Hopgood; Roger J. Hubbold; David A. Duce, eds. (1986). Advances in Computer Graphics II. Springer. p. 169. ISBN 9783540169109. Perhaps the best known one is the NEC 7220.
  187. ^ David Needle (1983-03-21). «NEC’s 7220 GDC chip allows high-resolution color graphics». Info World. pp. 31–34. Retrieved 2013-07-29.
  188. ^ Jon Peddie, The History of Visual Magic in Computers: How Beautiful Images are Made in CAD, 3D, VR and AR, p. 226, Springer Science+Business Media
  189. ^ PC Mag,
    October 14, 1986, p. 54
  190. ^ FR2487094A1 patent: Notebook computer system small
  191. ^ a b c d 【Shinshu Seiki / Suwa Seikosha】 HC-20, Information Processing Society of Japan
  192. ^ Epson HX-20, Old Computers
  193. ^ a b c d Michael R. Peres, The Focal Encyclopedia of Photography, p. 306, Taylor & Francis
  194. ^ «Epson SX-20 Promotional Brochure» (PDF). Epson America, Inc. 1987. Retrieved 2008-11-02.
  195. ^ Sharp PC-5000, Old Computers
  196. ^ a b c Japanese PCs (1984) (13:13), Computer Chronicles
  197. ^ Bob Armstrong, http://cosy.com/language/cosyhard/cosyhard.htm
  198. ^ Nicolae Sfetc, The Music Sound, p. 1525
  199. ^ a b c d e Russ, Martin (2012). Sound Synthesis and Sampling. CRC Press. p. 192. ISBN 978-1136122149. Retrieved 2017-04-26.
  200. ^ a b Martin Russ, Sound Synthesis and Sampling, p. 85, CRC Press
  201. ^ a b c d e f g h i David Ellis, Yamaha CX5M, Electronics & Music Maker, October 1984
  202. ^ a b c d Yamaha CX5M Music Computer Flyer, Yamaha
  203. ^ a b Helen Casabona, David Frederick, Advanced MIDI Applications, p. 15, Alfred Music
  204. ^ a b Happy birthday MIDI 1.0: Slave to the rhythm, The Register, August 2013
  205. ^ a b Yamaha CX5, Old Computers
  206. ^ a b c d YIS-503 / Diabolik, Old Computers
  207. ^ a b Yamaha SFG-01, MSX Resource Center
  208. ^ «Yamaha CX5M Music Computer». SonicState.com.
  209. ^ a b c d Yamaha SFG, MSX Resource Center
  210. ^ Mages; et al. (May 2010). «Yamaha FB-01».
  211. ^ Yamaha FB-01, Vintage Synth Explorer
  212. ^ Roland CMU-800, Vintage Synth Explorer
  213. ^ a b Happy birthday MIDI 1.0: Slave to the rhythm, The Register
  214. ^ a b MIDI INTERFACES FOR THE IBM PC, Electronic Musician, September 1990
  215. ^ Programming the MPU-401 in UART mode
  216. ^ MIDI PROCESSING UNIT MPU-401 TECHNICAL REFERENCE MANUAL, Roland Corporation
  217. ^ Peter Manning (2013), Electronic and Computer Music, p. 319, Oxford University Press
  218. ^ MT-32, Synthmania
  219. ^ Janssen, Cory. «What is a Universal Serial Bus (USB)?». Techopedia. Retrieved 2014-02-12.
  220. ^ Aperture grille details
  221. ^ Popular Science, April 1970, p. 26
  222. ^ US3794990A patent: System for driving liquid crystal display device
  223. ^ US3781862A patent: Display device for electronic calculator
  224. ^ JPS5327390A patent: Liquid crystal display device
  225. ^ JPS5437697A patent: Liquid crystal display unit of matrix type
  226. ^ JPS51139582A patent: Liquid crystal display units
  227. ^ JPS5279948A patent: Liquid crystal color display device
  228. ^ a b c Spin, Jul 1985, p. 55
  229. ^ The world’s first television-watch, with an active-matrix LCD, Epson
  230. ^ «Frank’s Handheld-TVs: Part 1».
  231. ^ A HISTORY OF CREATING INSPIRATIONAL TECHNOLOGY, Epson
  232. ^ a b Popular Science, May 1984, p. 150
  233. ^ a b Technology: Japan’s future TV lacks definition, New Scientist, November 1991
  234. ^ Hart, Jeffrey A. (1998). «Digital Television in Europe and Japan». Prometheus. 16 (2): 217–237. doi:10.1080/08109029808629277.
  235. ^ US3881311A patent: Driving arrangement for passive time indicating devices
  236. ^ Hirohisa Kawamoto (2013), The history of liquid-crystal display and its industry, HISTory of ELectro-technology CONference (HISTELCON), 2012 Third IEEE, Institute of Electrical and Electronics Engineers, DOI 10.1109/HISTELCON.2012.6487587
  237. ^ Fujitsu Develops Breakthrough Technology for High-Resolution PDPs Suited for High-Definition TVs, Fujitsu, 25 August 1998
  238. ^ a b Find out what is an LCD Projector, how does it benefit you, and the difference between LCD and 3LCD here, Epson
  239. ^ http://focus.ti.com/download/dlpdmd/166_History_Electronic_Proj_Tech_Hornbeck.pdf | Hornbeck, TI: From cathode rays to digital micromirrors: A history of electronic projection display technology
  240. ^ Product & Technology Milestones: Television, Sony
  241. ^ «Neodymium magnets». Borates. Archived from the original on 2016-07-29. Retrieved 2016-07-01.
  242. ^ «What is a Strong Magnet?». The Magnetic Matters Blog. Adams Magnetic Products. 2012-10-05. Retrieved 2012-10-12.
  243. ^ Patrick Mccluskey, F.; Podlesak, Thomas; Grzybowski, Richard (1996-12-13). High Temperature Electronics. ISBN 9780849396236.
  244. ^ Nishizawa, Jun-Ichi (1982). «Junction Field-Effect Devices». Semiconductor Devices for Power Conditioning. pp. 241–272. doi:10.1007/978-1-4684-7263-9_11. ISBN 978-1-4684-7265-3.
  245. ^ a b c d Jun-ichi Nishizawa: Engineer, Sophia University Special Professor Archived 21 July 2018 at the Wayback Machine (interview), Japan Quality Review, 2011
  246. ^ a Drummer, G.W (1997-01-01). Electronic Inventions and Discoveries: Electronics from its earliest beginnings to the present day, Fourth Edition. ISBN 9780750304931.
  247. ^ Dummer, G. W. A. (2013-10-22). Electronic Inventions and Discoveries: Electronics from its Earliest Beginnings to the Present Day. ISBN 9781483145211.
  248. ^ Nishizawa, Jun-ichi (December 2009). «Extension of frequencies from maser to laser». Proceedings of the Japan Academy. Series B, Physical and Biological Sciences. 85 (10): 454–465. Bibcode:2009PJAB…85..454N. doi:10.2183/pjab.85.454. PMC 3621550. PMID 20009378.
  249. ^ «Shuji Nakamura». University of California, Santa Barbara. Archived from the original on 2010-07-15. Retrieved 2008-07-31.
  250. ^ «The Nobel Prize in Physics 2014». Nobel Foundation. Retrieved 2014-10-07.
  251. ^ The implementation of a personal computer-based digital facsimile information distribution system – Edward C. Chung, Ohio University, November 1991, p. 2
  252. ^ Fax: The Principles and Practice of Facsimile Communication, Daniel M. Costigan, Chilton Book Company, 1971, pp. 112–114, 213, 239
  253. ^ «A Brief History of the ATM». The Atlantic. 2015-03-26. Retrieved 2015-04-26.
  254. ^ «How the ATM Revolutionized the Banking Business». Bloomberg L.P. 2013-03-27.
  255. ^ «ATMIA 50th Anniversary Factsheet» (PDF). atmia.com. ATM Industry Association. October 2015. Retrieved 2016-06-29.
  256. ^ ‘Fast Machine With a Buck’,»Pacific Star and Stripes», 7 July 1966
  257. ^ ‘Instant Cash with a Credit Card’, «ABA Banking Journal», January 1967
  258. ^ Demaria, Rusel; Johnny L. Wilson (2002). High Score! The Illustrated History of Video games. McGraw-Hill. p. 30. ISBN 978-0-07-222428-3.
  259. ^ «Die Geschichte der Handhelds, Teil 1 von 1972 – 1989». GIGA. 2013-08-26.
  260. ^ «Waco Tic-Tac-Toe». handheldmuseum.com.
  261. ^ Dillon, Roberto (2011-04-12). The Golden Age of Video Games. ISBN 9781439873236.
  262. ^ Eastin, Matthew S. (2010-07-31). Handbook of Research on Digital Media and Advertising: User Generated … ISBN 9781605667935.
  263. ^ Sfetcu, Nicolae (2014-05-04). «Game Preview». google.com.
  264. ^ Kasco and the Electro-Mechanical Golden Age (Interview), Classic Videogame Station ODYSSEY, 2001
  265. ^ Video Game Firsts, The Golden Age Arcade Historian (22 November 2013)
  266. ^ Basketball Flyer (1974), Arcade Flyer Museum
  267. ^ Bill Loguidice & Matt Barton (2009), Vintage games: an insider look at the history of Grand Theft Auto, Super Mario, and the most influential games of all time, p. 197, Focal Press, ISBN 0-240-81146-1
  268. ^ Mark J. P. Wolf (2012-06-15). Before the Crash: Early Video Game History. Wayne State University Press. p. 173. ISBN 978-0814337226. Retrieved 2016-07-08.
  269. ^ «GitHub – mamedev/mame: MAME». GitHub. 2019-01-20.
  270. ^ http://www.vasulka.org/archive/Writings/VideogameImpact.pdf#page=25[bare URL PDF]
  271. ^ a b «GlitterBerri’s Game Translations » Making the Famicom a Reality». Archived from the original on 2012-05-05. Retrieved 2017-05-28.
  272. ^ «GitHub – mamedev/mame: MAME». GitHub. 2019-01-20.
  273. ^ «MAME | src/mame/drivers/galdrvr.c». Archived from the original on 2014-01-03.
  274. ^ Montfort, Nick; Bogost, Ian (2009-01-09). Racing the Beam: The Atari Video Computer System. MIT Press. ISBN 9780262261524 – via Google Books.
  275. ^ a b c d e f g Kirn, Peter (2011). Keyboard Presents the Evolution of Electronic Dance Music. Backbeat Books. ISBN 978-1-61713-446-3.
  276. ^ a b 808 (documentary film)
  277. ^ a b «Nine Great Tracks That Use the Roland TR-909». Complex Networks.
  278. ^ a b «9 of the best 909 tracks using the TR-909».
  279. ^ Vine, Richard (2011-06-15), «Tadao Kikumoto Invents the Roland TB-303», The Guardian, London, no. 14 June, retrieved 2011-12-23
  280. ^ a b c Reid, Gordon (2004), «The History of Roland Part 1: 1930–1978», Sound on Sound (November), retrieved 2011-06-19
  281. ^ Matt Dean (2011), The Drum: A History, p. 390, Scarecrow Press
  282. ^ a b c d e f g «The 14 drum machines that shaped modern music». 2016-09-22.
  283. ^ a b c «Donca-Matic (1963)». Korg Museum. Korg. Archived from the original on 2005-09-03.
  284. ^ «Automatic rhythm instrument».
  285. ^ a b Russell Hartenberger (2016), The Cambridge Companion to Percussion, p. 84, Cambridge University Press
  286. ^ «Korg Mini Pops». Archived from the original on 2011-09-27. Retrieved 2017-06-02.
  287. ^ Russell Hartenberger (2016), The Cambridge Companion to Percussion, pp. 84–85, Cambridge University Press
  288. ^ ACE TONE: RHYTHM ACE – FR-1 & FR-2L INFO PAGE, Dubsounds
  289. ^ Rick Moody, On Celestial Music: And Other Adventures in Listening, p. 202, Hachette
  290. ^ Kris Needs, Suicide – A New York Story, Pop Matters
  291. ^ a b Mike Collins (2014), In the Box Music Production: Advanced Tools and Techniques for Pro Tools, p. 320, CRC Press
  292. ^ Martin Russ (2012), Sound Synthesis and Sampling, p. 83, CRC Press
  293. ^ a b Harry Shapiro, Michael Heatley, Roger Mayer, Jimi Hendrix Gear, p. 120, Voyageur Press
  294. ^ a b Molenda, Mike; Pau, Les (2007). The Guitar Player Book: 40 Years of Interviews, Gear, and Lessons from the World’s Most Celebrated Guitar Magazine. Hal Leonard. p. 222. ISBN 9780879307820.
  295. ^ «Boss CE-1 Chorus Ensemble». 2020-03-02.
  296. ^ a b Tribute: Ikutaro Kakehashi and Roland’s Impact on Music, Reverb.com
  297. ^ a b c Echoes in Time: The History of BOSS Delay Pedals, Boss Corporation, November 2015
  298. ^ Yamaha GX-1, Vintage Synth Explorer
  299. ^ FutureMusic, issues 131–134, 2003, p. 55
  300. ^ Jenkins, Mark (2009). Analog Synthesizers: Understanding, Performing, Buying—From the Legacy of Moog to Software Synthesis. CRC Press. p. 89. ISBN 978-1-136-12278-1.
  301. ^ a b A TALE OF TWO STRING SYNTHS, Sound on Sound, July 2002
  302. ^ a b «[Chapter 2] FM Tone Generators and the Dawn of Home Music Production». Yamaha Synth 40th Anniversary – History. Yamaha Corporation. 2014. Archived from the original on 2014-10-23.
  303. ^ a b Holmes, Thom (2008). «Early Computer Music». Electronic and experimental music: technology, music, and culture (3rd ed.). Taylor & Francis. p. 257. ISBN 978-0415957816. Retrieved 2011-06-04.
  304. ^ Holmes, Thom (2008). «Early Computer Music». Electronic and experimental music: technology, music, and culture (3rd ed.). Taylor & Francis. pp. 257–8. ISBN 978-0-415-95781-6. Retrieved 2011-06-04.
  305. ^ U.S. Patent 4,018,121
  306. ^ a b Mark Vail, The Synthesizer: A Comprehensive Guide to Understanding, Programming, Playing, and Recording the Ultimate Electronic Music Instrument, p. 277, Oxford University Press
  307. ^ Impact of MIDI on electroacoustic art music, Issue 102, p. 26, Stanford University
  308. ^ Curtis Roads (1996). The computer music tutorial. MIT Press. p. 226. ISBN 978-0-262-68082-0. Retrieved 2011-06-05.
  309. ^ Dean, R. T. (2009). The Oxford handbook of computer music. Oxford University Press. p. 1. ISBN 978-0-19-533161-5.
  310. ^ Shepard, Brian K. (2013). Refining Sound: A Practical Guide to Synthesis and Synthesizers. Oxford University Press. ISBN 9780199376681. The first digital synthesizer to make it into the studios of everyone else, the Yamaha DX7, became one of the most commercially successful synthesizers of all time.
  311. ^ Hey, what’s that sound: Casiotone, The Guardian
  312. ^ a b c d e Hicks, Dan (January 2010). «Exclusive Interview with RALPH DYCK, Godfather of the MC-8!».
  313. ^ a b c d e f g h i Chris Carter, ROLAND MC8 MICROCOMPOSER, Sound on Sound, Vol.12, No.5, March 1997
  314. ^ a b MC-8 MicroComposer Instruction Manual. 1979.
  315. ^ Russ, Martin (2008). Sound Synthesis and Sampling. Focal Press. p. 346. ISBN 978-0240521053. Retrieved 2011-06-21.
  316. ^ Paul Théberge (1997), Any Sound You Can Imagine: Making Music/Consuming Technology, p. 223, Wesleyan University Press
  317. ^ Herbert A. Deutsch (1985), Synthesis: an introduction to the history, theory & practice of electronic music, p. 96, Alfred Music
  318. ^ a b Gordon Reid (November 2004). «The History of Roland Part 1: 1930–1978». Sound on Sound. Retrieved 2011-06-19.
  319. ^ Russ, Martin (2008). Sound Synthesis and Sampling. Focal Press. p. 346. ISBN 978-0-240-52105-3. Retrieved 2011-06-21.
  320. ^ a b c Tanaka, Yuji (2014-11-11). «Yellow Magic Orchestra: The Pre-MIDI Technology Behind Their Anthems». Red Bull Music Academy.
  321. ^ Giorgio Moroder Gear Guide, Dolphin Music
  322. ^ Ryuichi Sakamoto – Thousand Knives Of (CD) at Discogs
  323. ^ Dr Ron Moy, Kate Bush and Hounds of Love, p. 77, Ashgate Publishing
  324. ^ The 30 Top Instruments and Innovations of Roland’s Ikutaro Kakehashi (1930–2017), Electronic Musician
  325. ^ Mark Prendergast (January 1995). «Tangerine Dream: Changing Use Of Technology, Part 2: 1977–1994». Sound on Sound. Retrieved 2016-03-28.
  326. ^ Yellow Magic Orchestra – Yellow Magic Orchestra at Discogs
  327. ^ Sound International, Issues 33–40. Sound International. 1981. p. 147. Retrieved 2011-06-21.
  328. ^ Wolbe, Trent (2013-01-30). «How the 808 drum machine got its cymbal, and other tales from music’s geeky underbelly». The Verge. Retrieved 2017-01-16.
  329. ^ Percussion Technology, Part II, SBO Magazine, December 2001
  330. ^ «Ace Tone Rhythm Producer FR-15». ESTECHO.com. 2016-12-17. – Sakata Shokai/Ace Tone Rhythm Producer, a successor of Rhythm Ace after the reconstruction of Ace Tone brand in 1972, provided feature to modify the pre-programmed rhythms.
  331. ^ a b Russell Hartenberger (2016), The Cambridge Companion to Percussion, p. 85, Cambridge University Press
  332. ^ «Roland CR-78 | Vintage Synth Explorer».
  333. ^ Contemporary Keyboard, Volume 7, Issues 1–6, 1981
  334. ^ Reid, Gordon (February 2002). «Synth Secrets: Practical Bass Drum Synthesis». Sound on Sound. Archived from the original on 2004-02-15. Retrieved 2015-11-25.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  335. ^ a b Leight, Elias (2016-12-06). «8 Ways the 808 Drum Machine Changed Pop Music». Rolling Stone. Retrieved 2016-01-16.
  336. ^ Spin, February 1990, p. 24
  337. ^ Hamilton, Jack (2016-12-16). «This New Doc About the Invention That Changed Music Is a Must-Watch for Music Nerds». Slate Magazine.
  338. ^ Wells, Peter (2004), A Beginner’s Guide to Digital Video, AVA Books, p. 18, ISBN 978-2-88479-037-6, retrieved 2011-05-20
  339. ^ «Firstman SQ-01 Sequence Synthesizer from Multivox» (advertisement). Contemporary Keyboard. Vol. 7, no. June 1981 – November 1981. p. 23.
  340. ^ «Multivox Firstman SQ-01 Sequencer». Keyboard Report. Contemporary Keyboard. Vol. 7, no. October 1981. 1981. pp. 82, 88.Keyboard Report, Oct. ’81«, according to the «Vol.9, 1983». 1983. )
  341. ^ «Firstman International». SYNRISE (in German). Archived from the original on 2003-04-20.
  342. ^ Mark Jenkins (2009), Analog Synthesizers, pp. 107–108, CRC Press
  343. ^ Vine, Richard (2011-06-15). «Tadao Kikumoto invents the Roland TB-303». The Guardian. Retrieved 2011-07-09.
  344. ^ db: The Sound Engineering Magazine, July 1972, p. 32
  345. ^ Kakehashi, Ikutarō; Olsen, Rober (2002). I Believe in Music: Life Experiences and Thoughts on the Future of Electronic Music by the Founder of the Roland Corporation. Hal Leonard Corporation. p. 197. ISBN 978-0-634-03783-2.
  346. ^ a b Chadabe, Joel (2000-05-01). «Part IV: The Seeds of the Future». Electronic Musician. XVI (5). Archived from the original on 2012-09-28. Retrieved 2017-05-23.
  347. ^ Holmes, Thom. Electronic and Experimental Music: Pioneers in Technology and Composition. New York: Routledge, 2003
  348. ^ a b Manning, Peter. Electronic and Computer Music. 1985. Oxford: Oxford University Press, 1994. Print.
  349. ^ The life and times of Ikutaro Kakehashi, the Roland pioneer modern music owes everything to, Fact
  350. ^ «Technical GRAMMY Award: Ikutaro Kakehashi And Dave Smith». 2013-01-29.
  351. ^ «Ikutaro Kakehashi, Dave Smith: Technical GRAMMY Award Acceptance». 2013-02-09.
  352. ^ Rockin’f, March 1982, pp. 140–141
  353. ^ A Beginner’s Guide To Yellow Magic Orchestra, The Electricity Club
  354. ^ a b Martin Russ (2004). Sound synthesis and sampling. p. 66. ISBN 9780240516929.
  355. ^ a b Butler, Mark Jonathan. «Unlocking the Groove: Rhythm, Meter, and Musical Design in Electronic Dance Music». Indiana University Press, 2006. ISBN 0-2533-4662-2. p. 64
  356. ^ «Roland – Company – History – History».
  357. ^ Billboard. Vol. 95, no. 5. 1983-02-05. p. 41.
  358. ^ Roland Corp (2014-01-20). «How Roland Came Up With 909 Sounds». Roland. Retrieved 2014-01-20.
  359. ^ The Mr. Fingers ‘Can You Feel It’ Bass Line, Synthtopia
  360. ^ Nine Great Tracks That Use the Roland TR-909, Complex
  361. ^ «The Best USB MIDI Drum Pads for Beginners – How to choose a USB MIDI Drum Pad Controller». Archived from the original on 2017-11-14. Retrieved 2017-06-02..
  362. ^ Roland MC-202 MicroComposer, Electronic Musician, November 2001
  363. ^ a b Roland D50, Sound on Sound, July 1997
  364. ^ Roland D50,Score of 4.58 out of 5 by 2936 users, May 2017
  365. ^ a b G. W. A. Dummer (1997), Electronic Inventions and Discoveries, p. 164, Institute of Physics
  366. ^ Valerie-Anne Giscard d’Estaing (1990), The Book of Inventions and Discoveries, p. 124, Queen Anne Press
  367. ^ a b Lazarus, David (1995-04-10). «‘Japan’s Edison’ Is Country’s Gadget King : Japanese Inventor Holds Record for Patent». The New York Times. Retrieved 2010-12-21.
  368. ^ Yoshiro Nakamatsu – The Thomas Edison of Japan, Stellarix Consultancy Services, 2015
  369. ^ Magnetic record sheet, Patent US3131937
  370. ^ Graphic Arts Japan, Volume 2 (1960), pp. 20–22
  371. ^ Barron, James (1990-11-11). «What a Stroke of … Um, Ingenuity, Anyhow». The New York Times. Retrieved 2010-05-03.
  372. ^ Spy, December 1991, p. 49
  373. ^ Lidz, Franz (December 2012). «Dr. NakaMats, the Man With 3300 Patents to His Name». Smithsonian Magazine. Retrieved 2014-10-15.
  374. ^ Hornyak, Tim (January 2002). «Dr. NakaMats: Japan’s Self-Proclaimed Savior». Japan Inc. Retrieved 2007-10-13.
  375. ^ SONY Micro Floppydisk Drive – Model OA-D30V
  376. ^ Toshiba MK1122FC, Information Processing Society of Japan
  377. ^ Toscal BC-1411 calculator, Science Museum, London
  378. ^ a b Toshiba «Toscal» BC-1411 Desktop Calculator
  379. ^ Advances in Computer Graphics II, p. 172, Springer Science+Business Media
  380. ^ Videodisc Update, Volumes 1–3, p. 13, 1982
  381. ^ Fulford, Benjamin (2002-06-24). «Unsung hero». Forbes. Retrieved 2008-03-18.
  382. ^ US 4531203 Fujio Masuoka
  383. ^ Shibasaki, T.; Hayashi, M. (September 1991). «Top-blown injection smelting and converting: The Mitsubishi process». JOM. 43 (9): 20–26. Bibcode:1991JOM….43i..20S. doi:10.1007/BF03222230. S2CID 138103985.
  384. ^ 40 years since Epson’s first Electronic Printer, Digital Photographer
  385. ^ About Epson, Epson
  386. ^ a b «Company Profile» (PDF). Sato Worldwide. Retrieved 2016-03-03.
  387. ^ Corporate Profile, SATO Group
  388. ^ «[PDF] Automatic method for fabricating a threedimensional plastic model – Free Download PDF». nanopdf.com. Retrieved 2020-12-29.
  389. ^ «Achievement Award 2014». ieice.org. Retrieved 2020-12-29.
  390. ^ «Hydro Printing and Dipping kits in Australia – Watertransferprinting». 2020-10-29. Archived from the original on 2020-10-29. Retrieved 2020-12-29.
  391. ^ Denki-Seiko [Electric Furnace Steel]. 11 (12): 643–656. 1935. doi:10.4262/denkiseiko.11.643 //doi.org/10.4262%2Fdenkiseiko.11.643.
  392. ^ Stephens, C.E. (2001). «Engineering time: Inventing the quartz wristwatch». Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218). pp. 2–3. doi:10.1109/freq.2001.956151. ISBN 0-7803-7028-7. S2CID 110696626.
  393. ^ (PDF) https://global.epson.com/company/corporate_history/milestone_products/pdf/35_spring-drive.pdf.
  394. ^ SMPTE Journal: Publication of the Society of Motion Picture and Television Engineers, Volume 96, Issues 1–6; Volume 96, p. 256, Society of Motion Picture and Television Engineers
  395. ^ First USA-Japan Computer Conference Proceedings: October 3–5, 1972, Tokyo, Japan, p. 320, American Federation of Information Processing Societies
  396. ^ «The quest for home video: Video discs part 2».
  397. ^ H04N21/236 patent: Digital video-storage system
  398. ^ «Ukichiro Nakaya». Famous Scientists. Retrieved 2016-07-05.
  399. ^ «Ceramic Ball (OHTO Japan English Website)». ohto.co.jp. 2008. Archived from the original on 2012-03-18. Retrieved 2012-05-04.

Zefirka > Наука и технологии > Японские изобретения, изменившие мир

Японские изобретения, изменившие мир

Япония – страна, которая задаёт моду на гаджеты во всём мире. Именно здесь были придуманы многие устройства от оружия до электроники, которыми пользуется весь мир. Японские изобретения проникли в современную культуру, развлечения и повседневную жизнь. Можно с уверенностью сказать, что мир не был бы таким, каким он есть, без изобретений Страны восходящего солнца.
Японские изобретения, изменившие мир

1.

Рикша
Японские изобретения, изменившие мир
Японское изобретение: рикша.
Все видели эти повозки, которые тянет, взявшись за оглобли, человек. Это умное и простое изобретение называется рикшей, и оно было впервые изобретено японцами в 1860 году. В то время это был недорогой и популярный вид транспорта. А такси? Оно появилось гораздо позже.

2.

Роман
Японские изобретения, изменившие мир
Японское изобретение: роман.
«Повесть о Гэндзи», написанная в Японии в XI веке, считается первым романом в истории. Он был написан женщиной по имени Мурасаки Сикибу и повествует о прекрасном аристократе и его многочисленных романах.

3.

Микрокомпьютер
Японские изобретения, изменившие мир
Японское изобретение: микрокомпьютер.
Sord SMP80 / 08, изобретенный и разработанный в 1972 году, был первым микрокомпьютером. Хотя он так и не пошел в массовое производство, это был большой шаг в развитии компьютеров.

4.

Плеер
Японские изобретения, изменившие мир
Японское изобретение: плеер.
Хотя подобная технология уже существовала в течение некоторого времени, Sony выяснила, как «упаковать» кассету с лентой в компактную коробку, что позволило слушать музыку на ходу. Компания назвала свое устройство «Walkman» и выпустила его в 1979 году.

5.

Компакт-диски, DVD-диски и Blu-Ray
Японские изобретения, изменившие мир
Японское изобретение: компакт-диски, DVD-диски и Blu-Ray.
Компакт-диски были изобретены японцами из Sony и голландцами из Philips. Компании обсудили вместе свои разработки и пришли к решению выпускать унифицированные 115-миллиметровые диски, на которые помещалось 74 минуты музыки. Позже Sony продолжила свои разработки, выпустив DVD, а также ввязалась в войну технологий против HD-DVD со своим диском Blu-Ray.

6.

Эмодзи
Японские изобретения, изменившие мир
Японское изобретение: эмодзи.
Именно японцев нужно поблагодарить за смайлики-эмодзи на телефоне. Созданный Сигэтака Куритой и его командой в компании NTT DoCoMo, язык идеограмм и смайликов использовался в качестве способа передачи информации и эмоций.

7.

Видеокамера
Японские изобретения, изменившие мир
Японское изобретение: видеокамера.
Хотя карманные устройства для записи видео существовали с 1950-х годов, Sony выпустила самую первую видеокамеру в 1983 году. Она записывала все на ленту Betamax и была намного проще, чем предыдущие способы записи фильмов.

8.

Камера для телефона
Японские изобретения, изменившие мир
Японское изобретение: камера для телефона.
Сегодня наличие камеры на мобильном телефоне является обычным делом, но еще в 1999 году это было чем-то неслыханным. Японская компания Kyocera Corporation выпустила первый сотовый телефон с камерой VisualPhone VP-210, который мог хранить до 20 изображений в формате JPEG.

9.

Карманный калькулятор
Японские изобретения, изменившие мир
Японское изобретение: карманный калькулятор.
Калькуляторы существуют уже в течение долгого времени. Но первый карманный калькулятор на микрочипе был изобретен японской компанией Busicom в 1970 году. Он назывался Busicom LE-120 Handy.

10.

QR-код
Японские изобретения, изменившие мир
Японское изобретение: QR-код.
Сегодня любой может использовать QR-код, чтобы получить информацию о компании или продукте. Изначально эта технология была изобретена в 1994 году дочерней компанией Toyota под названием Denso Wave.

11.

Литий-ионная батарея
Японские изобретения, изменившие мир
Японское изобретение: литий-ионная батарея.
В Японии компания Asahi Kasei проделала значительную работу над технологией перезаряжаемой литий-ионной батареи, в корне изменив ранее проведенные исследования. С помощью Sony Corporation она выпустила эту технологию на потребительский рынок.

12.

CRISPR
Японские изобретения, изменившие мир
Японское изобретение: «CRISPR».
Хотя технически никто не «изобрел» универсальный метод редактирования генов CRISPR, в 1987 году, первыми его обнаружили Ёсидзуми Исино и его команда в Университете Осаки. К сожалению, в то время они не понимали, что они обнаружили. Однако их исследование заложило основу для будущего.

13.

3D-печать
Японские изобретения, изменившие мир
Японское изобретение: 3D-печать.
3D-печать может показаться новым изобретением, но эта технология существует уже 37 лет. В 1981 году в Нагойском муниципальном промышленном научно-исследовательском институте Хидео Кодама опубликовал свою идею о быстрой системе прототипирования с использованием фотополимеров. Это была первая концепция 3D-принтера.

14.

Флэш-память
Японские изобретения, изменившие мир
Японское изобретение: флэш-память.
Флэш-память позволяет современным смартфонам хранить данные, такие как музыка, фотографии и видео. Фудзио Масуока, который в то время работал в Toshiba, изобрел флеш-память в 1984 году, чтобы решить проблему хранения данных даже на выключенном устройстве.

15.

Скоростной поезд
Японские изобретения, изменившие мир
Японское изобретение: скоростной поезд.
Поезда в Европе и Соединенных Штатах частично утратили свою важность после начала массового производства автомобилей. Однако в Японии все было не так. В Японии была изобретена и открыта первая высокоскоростная железнодорожная линия, а первый «поезд-пуля» отправился из Токио в Осаку в 1964 году. Это изобретение завоевало всемирную популярность, особенно в густонаселенных районах, нуждающихся в быстром массовом транзите.

Источник: https://novate.ru/blogs/010418/45594/

Наука и технологии
2 апреля, 2018
1 902 просмотра

wpDiscuz

японские изобретения

Когда Япония совершила свой знаменитый экономический прорыв, о ней заговорили как о самой перспективной стране. А сегодня Страна Восходящего Солнца заявляет, что давно перешла из перспективных в лидеры, что и подтверждает все новыми и новыми удивительными изобретениями.

Умные автоматы-продавцы

Когда находишься в Японии, то думаешь, что восстание машин начнется именно отсюда. А создается такое впечатление из-за количества торговых автоматов на душу населения. Если при их упоминании вам вспомнился советский автомат с газировкой, который каждый мог обдурить – выбросьте это из головы.

Более того, смартом может быть не только телефон, а японское изобретение — автоматизированные продавцы – уже давно умнее многих карманных гаджетов. Японцы доказали, что набор товаров может быть не настолько ограниченным, как это известно европейской части человечества. Например, в Японии вы можете в автомате купить морепродукты и свежие овощи.

японские изобретения

В городе Нанки компания, обеспечивающая автоматы крабами, гарантирует свежесть тем, что содержит крабов при температуре 50 . Это держит членистоногих в спячке, таким образом, при покупке вы можете убедиться, что он живой. Если же нет, компания компенсирует затраты и подарит вам двух живых крабов. Обмануть компанию поставщика не получится, у автоматов есть камеры видеонаблюдения.

Но это не единственный интересный автомат, еще вы таким образом можете купить:

• Картофельное пюре — свеженькое, горяченькое, да еще и с подливкой на любой вкус,

• Бананы,

• Свежевыращенную в автомате зелень,

• Свежеиспеченную пиццу – ешь хоть круглосуточно, автомат сам печет,

• Яйца, колбасы, рис, икру, улиток и других морских «чудовищ»,

• Горячий хлеб, а также то, чего вы не найдете нигде в мире – консервированный хлеб.

японские изобретения

Также автомат-бармен нальет вам пива, саке, продаст элитное вино и разные прохладительные напитки, коктейли. Соответственно все наименование товаров или продуктов описывается на японском языке.

Интересны автоматы, которые продают сочетания товаров, например, бутылочка виски с конфетой, пара сосисок в компании с презервативом. Зато вы почти нигде не найдете молочных продуктов – большинству азиатов они вредны, таковы особенности расы и эволюции.

Что же касается продажи через автоматы несъедобных вещей, то тут тоже есть, где развернуться: продажа мобильных телефонов, электронных читалок, медикаментов, нижнего белья. Есть автоматы для натурального обмена. Человек может прийти, положить какую-то вещь и взять то, что ему понравилось. А об автоматах для зарядки гаджетов и говорить нечего, они и в Европу пробрались.

А что касается цен, то в автомате действительно дешевле. Продукт идет напрямую покупателю без посредников и затрат на продавцов. Поэтому автоматы очень популярны, и индустрия этих машин набирает обороты.

Камера Neurocam

Еще в конце восьмидесятых — в начале девяностых маркетологи придумал использовать камеру, которая отслеживает взгляд покупателя в супермаркетах. Это проводилось с целью исследования целевой аудитории. Однако анализом полученных данных всегда занимался человек, каков бы маркетолог хорош ни был, он не может «залезть» человеку в мозг и посмотреть, о чем тот думает.
Японцы решили исправить этот существенный недостаток и изобрели камеру Neurocam.

японские изобретения

Это приспособление не только отслеживает взгляд человека, оно еще и анализирует химические реакции и визуализирует картинки на основе этой электроэнцефалограммы. Работает Neurocam в компании с iPhone и уже достаточно умна, хоть разработчики и утверждают, что этот девайс только на стадии разработки.

Что это дает простому юзеру? По утверждению японских изобретателей этого чуда техники, девайс поможет ловить моментально ускользающие идеи, мысли, догадки. Это поможет многим творческим людям, которые склонны забывать свои гениальные идеи. Также можно будет записывать сновидения и потом просматривать. Это существенная помощь психологам.

Создание ложных воспоминаний

японские изобретения

Riken Brain Science Institute (Институт мозга Японии) в сотрудничестве с Picower Institute for Learning and Memory (Технологическим институтом Обучения и Памяти, штат Массачусетс) открыли способ создания ложных воспоминаний у подопытных мышей.

Технология процесса создания не разглашается. Неизвестно, страдают ли мыши психическими заболеваниями, однако ученые заявляют, что открытие поможет понять природу и лечить множество психических заболеваний у людей.

Как заявляется на официальном сайте в Японии, идея и большая часть исполнения принадлежат японским ученым.

Глутамат натрия

Все наслышаны о глутамате натрия, и каждый может рассказать кучу страшилок о нем, хотя мало кто знает что-либо достоверно. Ведь эта пищевая добавка популярна не только в Японии, но и в всем мире. Что же это за «зверь» такой?

В 1908 году Икэда Кикунаэ, профессор Токийского университета, обратил внимание на водоросли комбу. Он заметил, что блюда, в которых содержится эта водоросль, имеют мясной привкус. И тогда ему пришло в голову сделать добавку и выделить этот ингредиент, чтобы его можно было добавлять как приправу. Икэда назвал добавку «умами» и впоследствии посвятил всю свою жизнь развитию ее производства.

японские изобретения

Надо сказать, эта добавка значительно расширила возможности современного маркетинга, поскольку «умами» не только придает мясной оттенок блюдам, она еще и значительно усиливает вкус. Вот почему мы хотим эту колбасу, а не ту, вот почему нам нравятся те пельмешки, а не эти.

Доктор НакаМац

Изобретатели — странный народ, иногда они в сотый раз изобретают то, что уже было изобретено, или откровенную ерунду. Однако если эта ерунда становится популярной, то есть коммерчески успешной, то такой изобретатель становится, как «звезда» шоубизнеса. Ёсиро Накамацу именно такой изобретатель. В 14 лет он изобрел насос, позволяющий легко заправлять соевым соусом блюда.

японские изобретения

На этом он останавливаться не стал и изобрел еще несколько вещей:
• Двигатель на воде;
• Кресло «Cerebrex», стимулирующее кровообращение с помощью звуковых импульсов;
• Ботинки с пружинным механизмом, позволяющим высоко прыгать.

Это ничего, что некоторые вещи, например, как флоппи-дисковод, уже были изобретены до него. Главное ведь – подход, ну и к тому же, чудакам многое позволено. Например, Ёсиро получит анти-премию. А все почему? Да из-за стремления жить дольше, чем все остальные. Ученый целых 34 года фотографировал и изучал то, что ел. Ну как тут ученому сообществу не улыбнуться, ведь Накамацу прекрасно образован, в этом нет никаких сомнений. Он тот, кого сейчас называют вундеркиндами. С трех лет изучал физику, химию, биологию, историю и языки.

Японская печатная машинка

Вы, наверное, слышали полуанекдот, что в японском языке более 50 тысяч иероглифов, так какой же тогда должна быть их печатная машинка? На самом деле это вполне компактная вещь.

японские изобретения

А современный вариант — вообще малютка, и содержит всего ничего: 2 400 знаков. Если вам интересно, в каком печатном порядке все расположено, то сообщаем – иероглифы расположены по возрастающей количества штрихов. Изобрел ее Кёта Сугимото в 1929 году, за что был удостоен внесения его в список самых значимых изобретателей Японии.

Искусственный жемчуг

Его впервые смог получить Микимото Кокити. Но что значит «получил», если поначалу у него не было сколько-нибудь приличного образования? А началось все еще в молодости, когда простой юноша, продающий лапшу, женился и за приданое жены купил ферму по разведению устриц. Моллюски всегда были ходовым товаром, а из-за дороговизны браконьерство было очень распространено. Устрицы-жемчужницы были на грани исчезновения.

1890 году на третьей национальной ярмарке в парке Уэно Микимото представил своих искусственно выращенных устриц. И на этой ярмарке нашего героя встретила удача в виде профессора биологии Какити Мицукури, который посоветовал ему выращивать не только устриц, но и жемчуг.

японские изобретения

Лишь спустя 11 лет Микимото сумел вырастить полукруглую жемчужину, а еще спустя 4 года он добился успеха и вырастил круглую жемчужину. На все про все ушло 15 лет, сопровождавшихся и несчастьями и маленькими победами.

Микимото Кокити успел потерять жену из-за страшной болезни, и перед ее смертью он поклялся добиться успеха. Что ж, он выполнил обещание, и теперь мы с вами можем приобрести вот такую красоту.

Ткань из асбеста

В ХVІІІ столетии писатель, фармацевт и изобретатель Хирага Гэннай изобрел ткань из асбеста.

японские изобретения

Если у вас возникли ассоциации с чем-то строительным, то вы правы. В современном мире эта ткань используется как теплоизолятор в автомобилестроении, строительстве и даже ракетостроении. На самом деле эта ткань — из минерала, который в природе «растет» тонкими волокнами.

Хигара Гэннай зарабатывал себе на жизнь писательством. Он сочинял драмы и сатирические романы для театра кукол, но его изобретение спустя столетия все же полетело в космос, хотя при жизни Хигара об этом никто даже не мечтал.

Лапша быстрого приготовления

Кто в наше время не знает этого блюда! Лапша быстрого приготовления – это блюдо на все времена, и именно оно спасает студенчество всего мира от голода, которое иногда даже не утруждает себя заливать это дело кипятком.

Что из себя представляет эта лапша и почему она быстро готовится? Это лапша из риса, которая обжарена в большом количестве масла и высушена. Поэтому для окончательного приготовления ее достаточно залить кипятком.

японские изобретения

Изобрел это чудо кулинарии Момофуку Андо – японец тайваньского происхождения. Впрочем, найдутся люди, которые возразят и скажут, что эта лапша была изобретена в XVI веке в Китае и называлась Е-фу.

Так-то оно так, но эту лапшу никто не додумался продавать в пенопластовой чашке с бульоном и с разными привкусами. В частности Момофуку изобрел (догадался «создать») лапшу в посудине, чтобы человек мог приготовить этот кулинарный шедевр прямо в этой чашке, добавить сушеные овощи или не добавлять ничего — и сразу есть.

Японское мороженое

Японцы очень любят экспериментировать с едой, а едой у них считается даже то, что мы таковым не считаем. Так вот, стремление найти что-то новое не обошло и мороженое. И уже никого не удивит этот десерт со вкусом рыбы или васаби. Японцы пошли гораздо дальше и изобрели мороженое со вкусом угля!

японские изобретения

Трудно описать это кушанье. В нем смешалась прохлада и вкус угля на молочной основе. Гадость? Еще бы, но интересная гадость.

От угля перейдем к угрю. Очень популярное мороженое и довольно вкусное, как будто вы едите охлажденное несладкое филе угря. Его можно смешать с мороженым из сычуаньского перца, и получится очень пикантно.

Дальше можно насладиться мороженым со вкусом сардин с бренди, а закусить мороженым со вкусом икры. Дальше в меню мясные «закуски», и тут японцы вас поразят в самое сердце, поскольку вкусы мяса бывают разные (12 видов), но самый популярный вкус – это конина. Если вы в шоке, то не ешьте все выше перечисленное, лучше обратите внимание на огуречное мороженое, оно освежает, приятное на вкус и тоже уникальное. Японцы переняли у французов опыт овощных вкусов мороженого и создали несколько своих уникальных: рисовое, тростниковое, зеленый чай и так далее.

Роботы

Каждый год, если не чаще, мы слышим, что японцы представили миру нового робота. И каждый раз робот умеет что-то новое: то он танцует, то он распознает речь и общается, то он летает, а то так похож на девушку, что хочется пригласить ее на свидание.

Но особенно поражает всех андроид Asimo, который внешне не похож на человека, однако больше, чем другие, наделен человеческими качествами. Он распознает жесты, окружение, движущиеся объекты, речь, лица.

японские изобретения

Это уникально тем, что все перечисленное – это то, что может делать маленький ребенок. Изобретатели корпорации Хонда очень стараются создать помощника человеку, и, возможно, это им удастся в скором будущем.

А какие интересные японские изобретения вы знаете? С чем необычным сталкивались в Японии? Расскажите в комментариях.

Хотите увидеть и попробовать эти изобретения сами в Японии? Для начала пройдите наш курс «Японский язык для начинающих за три шага«, а затем поучаствуйте в мастер-классе «Путешествие в Японию от А до Я» и отправляйтесь в страну мечты!

Япония-нация изобретателей, но они не просто дали нам роботов, хорошие автомобили и ноутбуки, они так же оказывают большое влияние на популярную культуру. Здесь показаны только несколько японских изобретений которые мы с удовольствием используем.

Датой и местом изобретения первой палки селфи спорно, но первая запатентованная палочка-селфи, первоначально называвшаяся «удлинителем», была создана в Японии Хироши Уэдой и Юджиро Мимой в 1980-х годах.

Караоке стал всемирно популярным способом для людей выступить перед друзьями, незнакомцами и коллегами по работе, но японцы делали это раньше всех.
Это произошло после того, как бизнесмен попросил Иноуэ записать на пленку свои любимые песни, чтобы он мог спеть им.

Первоначально смайлы ( эмоции) не создавались для текстовых сообщений чатов, а  были созданы для простых метеорологических отчетов или деловой информации для пейджеров.
Смайлы теперь являются частью нашего повседневного общения, и в 2015 году словарь Oxford Dictionaries назвал «лицо со слезами радости», как слово года.

Тойота Королла самый продаваемый автомобиль всех времен
Впервые появившись на рынке в 1966 году, он вскоре стал популярным во всем мире благодаря своей надежности и простоте.
Теперь Corolla, продала свою модель 10-го поколения, 44,1 миллиона автомобилей.

Рамен известен во всем мире как Японское блюдо, хотя на самом деле имеет свои истоки в Китае.
Китайские торговцы завезли этот суп в Японию, в 19 веке. Вскоре он стал основным продуктом рабочего класса Японии.
Но именно в 1958 году, первый упакованный по-современному рамен, или лапша быстрого приготовления, появилась на полках супермаркетов.
Для Японии это не просто лапша, а культура, есть музеи рамена, игры и тд.

Nintendo имеет удивительно долгую историю. Начиная с 1889 года Фусаджиро Ямуачи производил игровые карты под названием «Ханафуда» (цветочные карты).
С 1933 года она была зарегистрирована как компания и с 1970 взяла направление в электронные игры.
Game Boy, Nintendo 64 и Wii были одними из самых популярных игр

Плейстейшен 2
Был выпущен в Японии в 2000 году, компанией Сони.
Это сама продаваемая консоль всех времен, 155 миллионов покупателей.  Она была выпущена через шесть лето после Плейстейшен 1. 3800 игр было выпущено для этой приставки. В 2012 году Сони прекратило выпуск консоли.

Стереокассетный проигрыватель Sony, «Walkman», изменил способ прослушивания музыки. Это позволило людям слушать музыку на ходу. Он был представлен публике в 1979 году. Он был быстро раскуплен, а марка «Walkman» стало олицетворением плееров на долгое время.

Умами – пятый вкус (на ряду с горьким, соленым, кислым и сладким)
Японский химик Кикуна Икеда обнаружил его в 1908 году. Умами по-разному переводили с японского как «ямми», восхитительный или приятный пикантный вкус; оригинальное название появилось в 1908 году в лаборатории химика Токийского университета Кикунэ Икеда. Он отметил этот особенный вкус в спарже, томатах, сыре и мясе, но самым сильным умами был в даси — насыщенном бульоне из комбу (водорослей), которые широко используются в японской кулинарии. Химик уделил внимание комбу и выделил глутамат, аминокислоту, которая и является источником пикантного удовольствия. Затем он научился ее выделять и запатентовал известный всем нам усилитель вкуса глутамат натрия.

Эти плоды — гордость фермеров с японского острова Сикоку. Такое нигде в Японии больше не растет. О вкусах здесь не спорят. Что у арбуза внутри, мало кого волнует. Главное — соблюсти геометрию.В этом деле — форма, важнее содержания. Чтобы круглый арбуз превратился в куб, его помещают в стальные колодки и ждут, пока он не заполнит все пространство внутри.Квадратный арбуз — продукт штучный. На всю Японию в год их выращивают по 200-300 штук. Не пытайтесь это повторить: произведение японского сельхозискусства не предназначено для еды.Проблема заключается в том, что, достигнув нужной формы, большинство плодов остаются не вполне спелыми, — поясняет другой хозяин арбузной фермы Тосиюки Ямасита. — Они просто не успевают созреть. В итоге было решено, что кубические арбузы — это, в первую очередь, декоративная культура

Судоку  головоломка с числами. Иногда судоку называют «магическим квадратом», что в общем-то неверно, так как судоку является латинским квадратом 9-го порядка. Судоку активно публикуют газеты и журналы разных стран мира, сборники судоку издаются большими тиражами. Решение судоку — популярный вид досуга.

VHS (Video Home System, произносится: Ви-Эйч-Эс) кассетный аналоговый формат наклонно-строчной видеозаписи, разработанный корпорацией JVC и представленный на японском рынке в 1976 году/ Создателем формата считается инженер Сидзуо Такано, руководивший группой разработчиков с 1972 года.
Один из первых бытовых форматов, использующих компланарную видеокассету с расположением рулонов в одной плоскости. В СССР стал вторым после VCR, использованным в кассетных видеомагнитофонах отечественного производства[3]. С начала 1980-х годов занял в мире лидирующую позицию в войне форматов с «Бетамаксом» от Sony и Video 2000 от компаний «Grundig» и «Philips». Основными причинами победы называют отсутствие лицензионных ограничений, относительная простота и надёжность видеомагнитофонов этого формата, и отказ конкурентов поддерживать порноиндустрию. Кроме того, формат VHS впервые основан на оригинальном механизме «М-образной» заправки магнитной ленты в лентопротяжный тракт, более простом и надёжном, чем «U-образная» заправка предыдущих кассетных форматов, таких как «U-matic», «VCR» и «Бетамакс». О внедрении формата в Советском Союзе и сопротивлении японского министерства торговли снят документальный фильм «Рассвет нового дня: человек и VHS» (англ. Dawn of a New Day: The Man Behind VHS). На 2002 год, по оценкам JVC, в мире было продано свыше 900 млн видеоустройств этого формата и ещё больше видеокассет[. С середины 2000-х годов уступил лидирующую позицию оптическим видеодискам DVD.

Дзюдо́ (дословно — «Мягкий путь) — японское боевое искусство, философия и спортивное единоборство без оружия, созданное в конце XIX века на основе дзюдзюцу японским мастером боевых искусств Дзигоро Кано , который также сформулировал основные правила и принципы тренировок и проведения состязаний.
Датой рождения дзюдо считается день основания Кано первой школы дзюдо Кодокан  в 1882 году. По принятой в Японии классификации, дзюдо относится к так называемым современным боевым искусствам (гэндай будо, в противоположность традиционным воинским искусствам — корю будзюцу)

В отличие от бокса, карате и других ударных стилей единоборств, основой дзюдо являются броски, болевые приёмы, удержания и удушения в партере. Удары и часть наиболее травмоопасных приёмов изучаются только в форме ката. От других видов борьбы (греко-римская борьба, вольная борьба) дзюдо отличается меньшим применением физической силы при выполнении приёмов и большим разнообразием разрешённых технических действий.
Обладая значительной философской составляющей, дзюдо базируется на трёх главных принципах: взаимная помощь и понимание для достижения большего прогресса, наилучшее использование тела и духа, и поддаться чтобы победить. Перед занимающимися дзюдо традиционно ставятся цели физического воспитания, подготовки к рукопашному бою и совершенствования сознания, что требует дисциплины, настойчивости, самоконтроля, соблюдения этикета, понимания соотношения между успехом и необходимыми для его достижения усилиями

В 1937 году японская императорская армия санкционировала оснащение передвижных автомобильных кухонь примитивными рисоварками. Они представляли собой прямоугольный деревянный короб с двумя электродами. Для приготовления риса ящик заполнялся промытым рисом и водой, затем по электродам пропускался ток. Вода закипала, и рис варился. Когда рис был готов, количество воды уменьшалось, что приводило к росту сопротивления и уменьшению температуры, таким образом автоматически реализовывалось поддержание его в теплом состоянии. Этот метод, однако, не был совершенен, поскольку в разных условиях давал различный результат. Установка также представляла большой риск поражения электрическим током, и не была предназначена для домашнего приготовления пищи

1945 году корпорация Mitsubishi стала первой в Японии компанией, производящей домашнюю электрическую рисоварку. Продукция представляла собой алюминиевую кастрюлю с нагревательной спиралью внутри. У неё не было режима автоматического выключения, и она требовала постоянного наблюдения в процессе приготовления.
Первой использовавшейся на практике электрической рисоваркой стала изобретённая Ёситадой Минами. В декабре 1956 года Корпорация Toshiba поставила первые коммерчески успешные автоматические электрорисоварки на рынок[1][2]. Они использовали двухкамерные ёмкости для приготовления риса. Рис помещался в ёмкость для приготовления, а в окружающий контейнер заливалась вода. Когда вода во внешнем контейнере выкипала, температура резко возрастала, при этом активировался биметаллический термостат и происходило отключение прибора, предотвращая пригорание готового риса. Вскоре на японском рынке Toshiba производила 200 000 рисоварок в месяц. Четыре года спустя рисоварки можно было найти в половине японских домов.

За девять дней до открытия Олимпийских игр 1964 года в Токио император Хирохито почтил своим присутствием церемонию ввода в строй первого скоростного поезда, связавшего японскую столицу с Осакой. Бело-голубой экспресс, напоминавший своими очертаниями пулю, пронесся по железнодорожным путям мимо живописной горы Фудзияма со скоростью 210 км в час, преодолев расстояние между двумя мегаполисами в рекордно короткое время.

Для поезда построили специальную скоростную железнодорожную колею, прорыв для этого 108 км тоннелей и построив более трех тысяч мостов. Но это не была одноразовая пиар-акция накануне Олимпиады.

Скоростная магистраль «Токайдо-синкансэн» (что в переводе с японского означает «новая магистральная линия») стала не только самой скоростной железной дорогой в мире, но и самой загруженной.

Сегодня 16-вагонные поезда-пули «Синкансэн» выстреливают с платформ токийского вокзала каждые три минуты. Их средняя скорость на маршруте — 270 км/час. В каждом таком поезде — 1323 комфортабельных пассажирских кресла.

Поддельная несъедобная еда из Японии носит название «сампуру», она впервые появилась почти сто лет назад в трех часах езды от Токио, в населенном пункте Гудзо Хачиман. В 1917 году вдохновение посетило тамошнего предпринимателя Такизо Ивасаки, увлеченного анатомическими моделями. Он решил делать аппетитную рекламу для ресторанов и гастрономов без применения продуктов, а из воска. Из этого удобного вещества в то время лепили и поддельные декоративные цветы да букеты. Вскоре муляжи различных блюд японской кухни в разных точках общепита империи навсегда заменили бумажные меню, ибо всё получилось правдиво и понятно.

«Покемо́н» Pokémon, от англ. Pocket Monster «карманный монстр»[1]) сверхпопулярная медиафраншиза, созданная Сатоси Тадзири в 1996 году. Товарный знак «Покемон» принадлежит Nintendo, одной из крупнейших фирм-разработчиков видеоигр. «Покемон» впервые появился как пара игр, разработанных студией Game Freak, и после этого стал второй в мире по популярности серией компьютерных игр, уступив лишь другой серии игр Nintendo, Mario[4][5]. По мотивам игр существует аниме, пользующееся колоссальным успехом в мире, а также манга, коллекционная карточная игра и прочие сопутствующие товары[2][3][6][7]. С июля 2016 года появилась, получила широчайшее распространение по миру и серьёзный общественный резонанс игра Pokémon Go для гаджетов для интерактивной ловли покемонов в виртуально дополненном реальном мире (на реальных объектах по всей территории планеты).

Светодио́д или светоизлучающий диод полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.
Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Гидроцикл — тот редкий случай, когда техника изобреталась именно как спортивная. Первый в мире водный мотоцикл выпущен «родителем» снегохода, компанией Bombardier в 1968 году. Целью изобретателей было создание самоходных водных лыж, а получился водный мотоцикл — с сиденьем для водителя и пассажиров, электрическим стартером, рулевой колонкой и плоским днищем. Но агрегат так и не был запущен в производство, так как в нём не нашли практического и функционального применения, и в 1970 году разработка гидроциклов была остановлена. Таким непростительным промахом быстро воспользовалась японская фирма Kawasaki Heavy Industries, мгновенно оценив коммерческий потенциал «игрушки», и скоро японские гидроциклы заполнили пляжи всего мира. В 2004 году примерно полтора миллиона гидроциклов уже было зарегистрировано в американской береговой полиции.

В 1970 году всеми нам известные фирмы Canon и Sharp изобрели расчетный аппарат который весил 800 грамм, что уже намного больше напоминало современный аппарат. Однако изобретение карманного калькулятора причисляют компании Bomwar, выпустившую в 1971 году калькулятор 901B. По своему виду он очень напоминает модерные вычислительные машины.

Далее история возникновения калькуляторов начинает быстро развиваться: появляется множество разнообразной узкопрофильной техники, применяющейся в определенных сферах.

Идею создания портативной вычислительной машины «размером с блокнот, имеющей плоский монитор и умеющей подключаться к сетям без проводов», выдвинул начальник исследовательской лаборатории фирмы Xerox Алан Кей (Alan Key) в 1968 г.В 1982 г. по заказу NASA Вильям Могридж (компания Grid Systems) создал первый в мире ноутбук Grid Compass (оперативная память на ЦМД объёмом 340 КБ, процессор Intel 8086 с тактовой частотой 8 МГц, люминесцентный экран). Данный ноутбук использовался в программе Space Shuttle. Первая общегражданская модель Osborne 1 (масса 11 кг, оперативная память 64 Кб, процессор Zilog Z80A с тактовой частотой 4 МГц, два дисковода 5,25 дюйма.

IJN Hōshō ( «Хосё» или рус. «Хошо») — первый в мире вступивший в строй корабль, специально спроектированный и построенный как авианосец, первый авианосец ВМС Японии. Принял участие в боевых действиях во время Шанхайского инцидента, Японо-китайской войны 1937-1938 годов. Во время Второй мировой войны участвовал в Битве за Мидуэй. В 1946 году был продан на слом.

Первая общедоступная автомобильная навигационная система. Выпущена компанией Хонда в 1981 году

Понравилась статья? Поделить с друзьями:
  • Что такой праздник наурыз
  • Что я делала на рождественских праздниках салли спэрроу
  • Что это жизненный сценарий
  • Что элджей подарил ивлеевой
  • Что такой праздник курбан байрам