Сценарии будущего вселенной реферат

Будущее Вселенной – один из основных вопросов космологии, зависящий от таких характеристик Вселенной как ее масса, энергия, плотность и скорость расширения.

Будущее ВселеннойБудущее Вселенной – один из основных вопросов космологии, ответ на который зависит, в первую очередь, от таких характеристик и свойств Вселенной как ее масса, энергия, средняя плотность, а также скорость расширения.

Что мы знаем о Вселенной?

Для начала следует определить само понятие «Вселенная», которое имеет место быть как в астрономии, так и философии. В области астрономии наблюдаемую область Вселенной называют Метагалактикой или просто астрономической Вселенной. Однако, с теоретической точки зрения, которая учитывается большинством моделей и сценариев развития Вселенной, она представляет собой колоссальную систему, выходящую за пределы возможного наблюдения.

Одним из важнейших свойств Вселенной, которое было открыто относительно недавно – это практически однородное и изотропное расширение, которое также оказалось ускоренным. В зависимости от продолжительности этого расширения история Вселенной может принять один из двух предполагаемых сценариев.

Возможные сценарии развития нашего мира

Возможные сценарии развития нашего мира

В первом случае расширение будет продолжаться до бесконечности, вместе с этим средняя плотность вещества во Вселенной будет стремительно падать, приближаясь к нулю. Коротко говоря, вся начнется с распада скоплений галактик, а закончится делением протона на кварки.

Трансформации пространства

Трансформации пространства

Второй сценарий учитывает постулаты общей теории относительности (ОТО), которая гласит о том, что при значительном росте плотности вещества искривляется пространство-время. Если расширение все же начнет замедляться, то вероятнее всего в какой-то момент оно обернется сжатием. Тогда Вселенная начнет сжиматься, а средняя плотность ее вещества – стремительно расти. При таком ходе событий, согласно ОТО, пространство-время будет постепенно искривляться до тех пор, пока Вселенная не замкнется сама на себе, вроде поверхности обычной сферы, но с большим количеством измерений, чем мы привыкли себе представлять.

Космологические эпохи Вселенной

В попытках предсказать дальнейшую судьбу астрономической Вселенной, ученые разделили ее существование на следующие этапы:

  1. Эпоха звезд (106 – 1014 лет Вселенной). Эпоха, в которую мы живем, и которая отличается активным формированием и рождением звезд. Эпоха звезд будет длиться до того момента, пока не будут исчерпаны все запасы межзвездного газа. К тому времени красные карлики, небольшие и относительно холодные звезды (2000 – 3000 К), окончательно потухнут, переработав все внутреннее топливо. Солнце же, примерно через 5 млрд. лет (около 19 х 109 лет Вселенной) обернется красным гигантом, сбросив с себя верхние слои, которые вероятно поглотят Меркурий и Венеру. Если Землю не постигнет та же участь, то наша планета станет раскаленной и покроется лавой. Спустя еще 2 млрд. лет Солнце оставит после себя лишь белого карлика, а Млечный Путь начнет сливаться с галактикой Андромеда, в результате чего образуется новая единая галактика.
  2. Эпоха распада (1015 – 1039 лет). Временной отрезок жизни Вселенной, к началу которого топливо большинства звезд будет переработано, и они перейдут к последнему этапу своей эволюции, существованию в виде белых карликов, нейтронных звезд или черных дыр, в зависимости от изначальных характеристик тела. Термоядерные реакции будут иметь место лишь в недрах коричневых карликов, которых в космическом пространстве останется незначительное количество. Постепенно галактики одного и того же скопления сольются воедино.

    Конец эпохи распада в представлении художника. Пространство без звезд выглядит пугающе.

    Конец эпохи распада в представлении художника. Пространство без звезд выглядит пугающе.

  3. Эпоха черных дыр (1040 – 10100 лет). До начала этой эпохи подавляющая часть космических тел распадется на элементарные частицы, которые и станут основными представителями вещества во Вселенной. Из числа массивных объектов останется лишь малое число нейтронных звезд, а также черные дыры. Если все предыдущие эпохи они накапливали на своей поверхности вещество, то теперь останется лишь процесс излучения накопленного вещества в виде различных элементарных частиц, по большей части – фотонов (излучение Грибова-Хокинга). В результате длительного излучения частиц черная дыра постепенно теряет массу. По этой причине в некоторый момент сил гравитации становится недостаточно, чтобы удержать черную дыру как единое тело, и она взрывается, высвобождая колоссальную энергию в виде испускаемых частиц. Другим типом излучения черной дыры являются гравитационные волны, которые формируются как результат столкновения двух массивных объектов. В результате взаимного притяжения черных дыр образуются их скопления и сверхскопления. Примечательно, что по этой причине может образоваться одна гигантская черная дыра, которая либо будет существовать до конца жизни Вселенной, либо ее температура и плотность достигнут Планковского предела и она вспыхнет новым Большим Взрывом, дав начало новой Вселенной.
  4. Эпоха вечной тьмы ( > 10101 лет). Всевозможные источники энергии уже исчерпали себя и в космическом пространстве остались лишь их остаточные продукты, вроде длинноволнового излучения фотонов, нейтрино, кварков, а также позитронов и электронов. Последние изредка и на короткое время (до 143 нс) будут образовывать систему в виде экзотического атома – позитрония. Однако, в конце концов все элементарные частицы настигнет полная аннигиляция. При этом температура Вселенной упадет до максимально близкого значения к абсолютному нулю.

Для того, чтобы получить позитроний сегодня, ученым нужна массивная сложная аппаратура. Но в конце он будет единственным, что может существовать.

Для того, чтобы получить позитроний сегодня, ученым нужна массивная сложная аппаратура. Но в конце он будет единственным, что может существовать.

Будущее Вселенной

Несмотря на то, что вещество Вселенной постепенно аннигилирует, само пространство может эволюционировать по четырем гипотетическим сценариям:

  1. Если со временем расширение Вселенной замедлится, а после — обернется в сжатие, то конечным этапом ее жизни станет Большое сжатие. В результате чего все вещество коллапсирует и вернется в изначальное свое состояние – сингулярность.
  2. Иной сценарий — средняя плотность вещества Вселенной точно определена и является таковой, что расширение постепенно замедляется.
  3. Наиболее вероятная, в силу современных результатов наблюдений, модель. Подразумевает равномерное расширение Вселенной, по инерции.
  4. Стремительный рост скорости расширения Вселенной, который приведет наш мир к так называемому Большому разрыву.

Федеральное агентство по образованию

ГОУ ВПО «УГТУ-УПИ имени первого Президента России Б.Н. Ельцина»

Институт образовательных информационных технологий

Факультет дистанционного образования

Кафедра

Реферат

на тему: Эволюция Вселенной, её различные модели

по дисциплине: Концепции современного естествознания

Екатеринбург

Введение

Что есть Вселенная, Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной, как долго она существует, из чего состоит и где границы ее познания? Изучение Вселенной, даже только известной нам её части, является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Проблема возникновения Вселенной занимала людей еще до появления современной науки. В основе интереса лежит — желание дойти до первопричины всего сущего. В библии, например, указана даже точная дата сотворения мира — 5 тысяч лет до нашей эры. Историческое обоснование этой даты может быть в том, что она примерно соответствует последнему ледниковому периоду — 10 тысяч лет до нашей эры. В 5 веке нашей эры автор «Христианской науки» Блаженный Августин указывал, что до возникновения Вселенной понятие времени лишено смысла, что удивительным образом совпадает с представлениями современной науки. Августин писал, что Бог создал и Вселенную, и время, поэтому до рождения Вселенной времени не было. Почему же тогда Вселенная возникла в какой — то определенный момент времени? Древние греки: Платон, Аристотель считали, что мир неизменен и существует вечно, но лишь иногда в нем случаются катастрофы, которые отбрасывают человечество назад.

Целью данной работы является анализ различных моделей существования и эволюции Вселенной, в том числе и сценариев развития Солнечной системы, чьей составной частью является наша планета Земля.

Глава 1. Состав Вселенной и её размеры

Видимая часть Вселенной состоит из сотен миллиардов галактик, и в каждой галактике десятки миллиардов звезд. На каждого обитателя Земли приходится по миллиарду звезд, что значительно расширяет возможности маленького принца Экзюпери, который скромно довольствовался всего одной планетой. Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Но это лишь видимая часть Вселенной.

Звездная система, в составе которой как рядовая звезда находится наше Солнце, называется Млечный путь. Число звезд в Галактике порядка 1012 (триллиона). Млечный путь, светлая серебристая полоса звезд, опоясывает всё небо, составляя основную часть нашей Галактики. Солнечная система не находится в центре Галактики. В центре Галактики расположено ядро диаметром 1000-2000 пк — гигантское уплотненное скопление звезд. В состав ядра входит много красных гигантов и короткопериодических цефеид (крупные скопления звезд).

Звезды верхней части главной последовательности, а особенно сверхгиганты и классические цефеиды, составляют более молодое население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Науке известна природа лишь 5 % вещества, из которого состоит Вселенная. Эти 5 % (4 %обычная материя — планеты, туманности и т.п., 1 % звезды и галактики) мы видим вокруг и сами из него сделаны. Остальное — великая тайна, а именно 70 % тёмная энергия (недавно открытая форма антигравитации), а 25 % тёмная материя (невидимые частицы с неизвестными свойствами) и5 % видимое вещество (см. рис 1).

Масса нашей Галактики оценивается сейчас разными способами, она равна приблизительно 2*1011 масс Солнца (масса Солнца равна 2*1030 кг), причем 1/1000 ее заключена в межзвездном газе и пыли. Масса галактики в Андромеде почти такова же, а масса галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы московский астроном В.В. Кукарин в 1944 г. нашел указания на спиральную структуру Галактики, причем оказалось, что мы живем в пространстве между двумя спиральными ветвями, бедном звездами. В некоторых местах на небе в телескоп, а кое-где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.

Глава 2. Модели эволюции Вселенной

Вселенная — это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука, так или иначе, изучает Вселенную, точнее, тем или иные её стороны. Химия изучает мир молекул, физика — мир атомов и элементарных частиц, биология — явления живой природы. Но существует научная дисциплина, объектом исследования которой служит сама Вселенная. Это особая отрасль астрономии, так называемая космология. Космология — учение о Вселенной в целом.

С развитием кибернетики в различных областях научных исследованиях приобрели большую популярность методики моделирования. Построение различных моделей относится к одному из важных путей познания объективно существующего мира. Объекты, явления и процессы, происходящие во Вселенной, очень сложны. Моделирование позволяет выделить наиболее существенные, характерные черты этих процессов.

С развитием науки, все полнее раскрывающей физические процессы, происходящие в окружающем нас мире, большинство ученых постепенно перешло к материалистическим представлениям о бесконечности Вселенной. Здесь огромное значение имело открытие И. Ньютоном (1643 — 1727) закона всемирного тяготения, опубликованного в 1687 г.

Одним из важных следствий этого закона явилось утверждение, что в конечной Вселенной все ее вещество за ограниченный промежуток времени должно стянуться в единую тесную систему, тогда как в бесконечной Вселенной вещество под действием тяготения собирается в некоторых ограниченных объемах (по тогдашним представлениям — в звездах), равномерно заполняющих Вселенную.

Большое значение для развития современных представлений о строении и развитии Вселенной имеет общая теория относительности, созданная А. Эйнштейном (1879 — 1955). Она обобщает теорию тяготения Ньютона на большие массы и скорости движения, сравнимые со скоростью света. Действительно, в галактиках сосредоточена колоссальная масса вещества, а скорости далеких галактик и квазаров сравнимы со скоростью света.

Одним из значительных следствий общей теории относительности является вывод о непрерывном движении вещества во Вселенной — нестационарности Вселенной. Этот вывод был получен в 20-х годах нашего столетия советским математиком А.А. Фридманом (1888 — 1925). Он показал, что в зависимости от средней плотности вещество Вселенная должна либо расширяться, либо сжиматься. В будущем расширение Вселенной сменится сжатием, а при средней плотности равной или меньшей критической расширение не прекратится. Два последних варианта активно рассматривались астрофизиками, причем в 80 — годы в них было включено невообразимо быстрое расширение Вселенной (инфляция), происшедшее в первые мгновения Большого взрыва.

Теория Александра Фридмана, в отличие от Эйнштейна, считавшего Вселенную стабильной и неизменной, наиболее полно описывает модель её возникновения и развития. Взгляды Фридмана заложили основу для дальнейшего изучения процессов, происходящих во Вселенной.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А. Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины — один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома» по мнению Г.А. Гамова образовался всоеобраэный космологический котел с температурой порядка трей миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца — отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва».

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудники Дльфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространённости тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Ученые стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц — протонов, электронов и нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий — горячей и холодной и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

В конце 60-х годов группа американских ученых во главе с Р. Дикке приступила к попыткам обнаружить реликтовое излучение. Но их опередили Л. Пепзиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие микроволнового фона (это официальное название реликтового излучения) на волне 7,35 см.

Примечательно, что будущие лауреаты Нобелевском премии не искали реликтовое излучение, а в основном занимались отладкой радиоантенны, для работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г они при различных положениях антенны регистрировали космическое излучение, природа которого первоначально была им не ясна. Этим излучением и оказалось реликтовое излучение.

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель «начала». Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории — о нейтронном составе «космического яйца» и горячем состоянии молодой Вселенной — проверку временем «выдержала «только «последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения.

«Морозильный» сценарий разработали американские физики Фред Адамс и Грегори Лафлин еще до открытия ускоренного расширения Вселенной — в 1997 году (модель строится на базе стандартной модели). Согласно их модели, история нашей Вселенной насчитывает четыре эры:

Звездная эра (началась через сотни миллионов лет после Большого взрыва, во Вселенной стали возникать первые звезды и началась интенсивная генерация энергии за счет ядерного синтеза в звездных недрах. Эти процессы продолжаются и сейчас. Ученые вычислили, когда Вселенной исполнится 1014 лет в космическом пространстве не останется свободного водорода, и звезды закончат свое существование).

Эра вырождения охватывает промежуток 1015 — 1037 лет, от сверкающих светил остались нейтронные звезды и белые карлики, копятся черные дыры, которые усиленно растут, произойдет распад ядерного вещества, протоны будут распадаться на позитроны, фотоны, нейтрино и в итоге обычное вещество в составе планет и белых карликов начнет превращаться в излучение.

Эра черных дыр приходится на промежуток времени 1038 — 10100. В это время исчезнут все протоны и нейтроны (барионы) и единственными макрообъектами во Вселенной останутся черные дыры и они вскоре испарятся в излучение и исчезнут во взрывах.

Темная эра наступит когда возраст мироздания превысит 10100 лет. Из материи останутся лишь кванты электромагнитного излучения почти 0 температуры и стабильные лептоны (нейтрино, электроны и позитроны).

Модель «раздувающейся Вселенной» была предложена в 2003 году Р. Калдвеллом, М. Камионковски и Вейнбергом. Расширение Вселенной не дает объяснений в моделях «горячей Вселенной». Возрастающее увеличение темной энергии (вакуум) приведет к вселенскому антиколлапсу. Скорость расширения пространства возрастет до такой степени, что разорвет галактики, т.е. здесь решающее значение приобрела антигравитация, удаление всех пунктов одновременно. Распадутся планетные системы, планеты теряют связь с Солнцем. Разрушаются звезды и планеты. Химические соединения распадаются на атомы, но и атомы теряют стабильность, ядра не могут удерживать электроны. Но все это в далеком будущем.

Существует модель, согласно которой финал гибели Вселенной может произойти и завтра. Впервые он был предложен московским физиком М.Б. Волошиным, И.Ю. Кобзаревым и Л.Б. Окунем в 1975 году. В данной теории учитывается особенность вакуума. В нем отсутствуют реальные частицы, однако постоянно рождаются и исчезают их виртуальные аналоги. В любой момент может произойти туннелирование вакуума из одного состояния в другое, и останется в итоге пространство — время и материя с совершенно иными свойствами (или ничего).

Энергия вакуума учитывается в теории инфляционного расширения новорожденной Вселенной.

Инфляционная модель Вселенной — гипотеза <#»justify»>Сценарий №4 Гигантское Солнце

В конце своего развития огромное красное Солнце поглотит Землю, которая превратиться в выжженную пустыню.

Когда-то Солнце выглядело совсем иначе, чем сегодня. Спустя миллиарды лет оно вновь изменит свой облик. Однако эти изменения незаметны в масштабах человеческого времени. Тем не менее, у Солнца есть свой собственный жизненный цикл — образование из облака межзвездного вещества, затем период более или менее спокойного существования, а потом неминуемая смерть.

Через пять миллиардов лет Солнце израсходует весь водород, перейдет на гелий и станет больше сегодняшнего на 75 процентов.

Пройдут еще несколько миллиардов лет, и новое Солнце поглотит Меркурий и Венеру — планеты, ближе всего расположенные к центру Солнечной системы. А Земля, плавающая в раскаленной атмосфере Солнца, сойдет со своей орбиты и в конце концов по спирали погрузится в горнило огромной звезды. Возможно, что Марсу повезет, и примерно на миллиард лет там установится климат, пригодный для зарождения жизни или для ее восстановления, если верно, что она там уже существовала несколько миллиардов лет назад.

Сценарий №5 Конец всей солнечной системы

Обледеневшие планеты Солнечной системы будут летать во мраке вокруг белого карлика-Солнца.

Ужасное расширение, которое произойдет с Солнцем в стадии красного гиганта, опустит занавес на сцене земной жизни. Но это не станет последним актом его существования. В таком состоянии Солнце будет находиться еще миллиард лет. Оно станет питаться гелием, а затем начнет сжигать другие — все более тяжелые — элементы, расположенные на большей глубине, в ядре светила, пожирая слой за слоем, уменьшаясь, как луковица. Когда очередь дойдет до железа, процесс термоядерного синтеза с выделением энергии остановиться. Впрочем, превращение элементов в недрах звезды будет продолжаться, и довольно активно, но теперь уже оно будет происходить с поглощением энергии.

Во время этих последовательных термоядерных реакций будут возникать периоды нестабильности Солнца, во время которых его светимость будет меняться, придавая ему вид переменной звезды типа пульсирующих звезд — цефеид. В финальном периоде смена фаз будет ускоряться, каждая последующая будет короче предыдущей. И все же, в отличие от звезд с большей массой, Солнце не закончит жизнь мгновенно, то есть путем взрыва. Самые верхние слои «отшелушатся» в космос, образовав там планетарную туманность.

В центре солнечной планетарной туманности останется холодное ядро из водорода, гелия, углерода, кислорода и других — более тяжелых — элементов. Его объем будет, сравним с объемом Земли, а плотность в миллионы раз превысит плотность воды (иными словами, масса кубического сантиметра такого вещества будет измеряться тоннами!)

Остывая миллиарды лет, оно охладится до температуры 4000 Кельвинов, и в его веществе начнется процесс кристаллизации.

Вокруг маленького белого Солнца будут вращаться реликты уцелевших планет, скорее всего, это будут Марс, Юпитер и Сатурн, холодные кольца которого испаряться во время фазы красного гиганта. И наступит вечная ночь, во время которой будет так же темно, как сегодня на Земле в полнолуние, а Солнце будет выглядеть ненамного ярче других звезд.

Сценарий №6 Конец млечного пути в черной дыре

Черная дыра, находящаяся в центре Галактики поглотит в свою воронку все звезды Млечного Пути.

Если наблюдать за Млечным Путем и другими далекими галактиками, сразу броситься в глаза очевидная разница: в нашей звездной системе царит относительное спокойствие, тогда как многие другие галактики живут в непрерывной активности.

Выбросы газов, области высокой интенсивности формирования звезд, мощные потоки радиоволн, рентгеновских и гамма лучей, высвобождение огромного количества энергии — все это придает галактикам вид близких звезд, тогда как на самом деле они находятся от нас на расстоянии миллиардов световых лет.

Одна из гипотез объясняет неистовую активность этих звездных систем находящимися в их центрах гигантскими черными дырами, масса которых составляет десятки миллионов солнечных масс.

Существование подобного космического мега пылесоса, который невозможно увидеть непосредственно, подтверждают наблюдаемые астрономами вихревые явления и высочайшие перепады температур, возникающие в ходе всасывания вещества в черную дыру и сопровождающиеся выбросами энергии и газа.

Астрофизики, наблюдая центр нашей Вселенной в различных диапазонах радиоволн, инфракрасного и рентгеновского излучения, а также гамма лучей и собрав массу данных, предложили, что в центре Млечного Пути существует черная дыра.

Ученые предположили, что в центре Млечного Пути существует повышенная концентрация вещества, масса которой превышает солнечную примерно в два миллиона раз, но количество света, доходящего оттуда до нас, непропорционально мало. Кстати, именно по этой причине некоторые ученые сомневаются, что в центре Млечного Пути действительно расположилась огромная черная дыра. Но, с другой стороны, столь громоздкие образования, ведущие себя относительно спокойно, найдены не только в нашей, но и в других внешне нормальных галактиках, например, в туманности Андромеды и ее спутнике M32, недавно изученных с помощью космического телескопа «Хаббл».

Возможно, черная дыра образовалась в результате столкновения с другими галактиками в те далекие времена, когда Вселенная имела еще маленькие размеры. Но что произойдет при встрече ее с другими галактиками, если она когда-нибудь пробудиться от сна? Ответ неутешителен: черная дыра втянет в себя всю нашу Галактику.

В этом случае Млечный Путь ожидает незавидная судьба — сначала он превратиться в водоворот звезд и газа, а затем — в мизерную по размеру область с бесконечно большой плотностью.

Заключение

Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас, и будут происходить в будущем. Мир становится все сложнее, усложняются и появляются новые теории. И наука не стоит на месте, появляются новые взгляды, гипотезы, учения, поскольку «природа не раскрывает свои тайны раз и навсегда» (Л.А. Сенека).

Если нашей Вселенной грозит смерть, то, может быть появится возможность в будущем перелететь до другой Вселенной. Из общей теории относительности следует возможность существования пространственно-временных тоннелей и перехода в другие Вселенные.

Мы знаем строение Вселенной в огромном объеме пространства, для пересечения которого свету требуются миллиарды лет. Но пытливая мысль человека стремится проникнуть дальше. Что лежит за границами наблюдаемой области мира? Бесконечна ли Вселенная по объему? И её расширение — почему оно началось и будет ли оно всегда продолжаться в будущем? А каково происхождение «скрытой» массы? И наконец, как зародилась разумная жизнь во Вселенной? Есть ли она ещё где-нибудь кроме нашей планеты? Окончательные и полные ответы на эти вопросы пока отсутствуют. Вселенная неисчерпаема. Неутомима и жажда знания, заставляющая людей задавать всё новые и новые вопросы о мире и настойчиво искать ответы на них.

Список использованной литературы

1.Воронцов — Вельяминов Б.А. Очерки о Вселенной. М.,1980. — 672 с.

2.Ксанфомалити Л. Темная Вселенная // Наука и жизнь 2005№5. 58-69 с.

.Левин А. Судьбы мироздания // Популярная механика 2006 №9 40-46 с.

.Левитан Е.П. Эволюционирующая Вселенная. М.: Просвещение., 1993г. 159 с.

.Лесков С. Большой и нужный взрыв // Известия.-2007.-12 апр. 5 с.

.Перель Ю.Г. Развитие представлений о Вселенной М.,1958. 352 с.

.Сурдин В.Г. Дарвин и эволюция Вселенной //Экология и жизнь 2009 №3 4-10 с.

.Шкловский П.С. Вселенная, жизнь, разум М.: Наука 1987. — 320с.

9.<http://www.natural-history.ru/vselennaya_3.php>

.<http://www.philosophy.ru/iphras/library/zizin.html>

.<http://www.po4itay.ru/secret/other/5.htm>

Теги:
Эволюция Вселенной, её различные модели. Сценарий будущего Солнечной системы 
Реферат 
Биология

Любопытно знать
не только далекое прошлое Вселенной,
но и ее далекое будущее. Тем более что
это будущее не менее поразительно, чем
ее прошлое. Теоретическое моделирование
будущего Вселенной существенно
различается в «открытых» и «закрытых»
ее моделях.

«Закрытые»
модели предполагают, что в будущем
расширение Вселенной сменится ее
сжатием. Исходя из общей массы Вселенной
1052
т можно предположить, что примерно через
30 млрд лет она начнет сжиматься и через
50 млрд лет вновь вернется в сингулярное
состояние. Полный цикл расширения и
сжатия Вселенной составляет примерно
100 млрд лет. Таким образом, Вселенная
может быть представлена как грандиозная
закрытая система, испытавшая множество
эволюционных циклов. При переходе от
одного цикла к другому некоторые общие
параметры Вселенной (Метагалактики)
могут изменяться. Например, могут
изменяться фундаментальные физические
константы.

Совершенно
иначе предстает будущее Вселенной в
«открытых» космологических моделях,
которые, По сути, представляют собой
сценарии «тепловой смерти» Вселенной.
В соответствии с ними уже через 1014
лет многие звезды остынут, что достаточно
быстро (через 1015
лет) приведет к тому, что планеты начнут
отрываться от своих звезд, а звезды
покидать свои галактики. Примерно через
1019
лет большая часть звезд покинут свои
галактики и постепенно превратятся в
«черные карлики»; центральные области
галактик коллапсируют, образуя «черные
дыры» и тем самым прекращают свое
существование.

Дальнейшая
эволюция будущей Вселенной не вполне
ясна. Если обнаружится, что протон
действительно нестабилен и распадается
через 1032
лет на у-квант
и нейтрино, то Вселенная и будет
представлять собой совокупность
нейтрино, квантов света с убывающей
энергией и черных дыр. Самые массивные
черные дыры испарятся за 1096
лет и через 10100
лет во Вселенной останется лишь
электронно-позитронная плазма ничтожной
плотности.

Иначе
разворачивается возможный сценарий
будущего Вселенной в том случае, если
протон стабилен. Тогда примерно через
1065
лет любое твердое вещество превратится
даже при абсолютном нуле в жидкость.
Все оставшиеся черные карлики станут
жидкими каплями. А через 101500
лет любое вещество станет радиоактивным,
и все жидкие капли (т.е. бывшие звезды)
станут железными. От грандиозной и
разнообразнейшей Вселенной останутся
только жидкие холодные железные капли!

Что
же дальше? Пройдет невообразимое число
лет, которое можно выразить числом 1010,
пока такие железные капли не превратятся
в «черные дыры». Эти, уже последние,
«черные дыры» за относительно небольшой
промежуток времени 1067
лет испарятся, превратив Вселенную в
поток сверхдлинноволновых квантов и
электронно-позитронную плазму. Такое
состояние — окончательная «смерть»
Вселенной.

11.8. Жизнь и разум во Вселенной: проблема внеземных цивилизаций

11.8.1. Понятие внеземных цивилизаций. Вопрос об их возможной распространенности

В последние
десятилетия в массовом сознании
отмечается наплыв очередной волны
мистицизма. На этом фоне широкое
распространение получило обсуждение
вопроса о внеземных цивилизациях, их
поисках и контактах с ними. Увлечение
поисками НЛО и страстное ожидание
пришельцев из внеземных цивилизаций
стали чуть ли не повальными. Подчас это
увлечение приобретает явные черты
массового психоза — почти ежемесячно
в средствах массовой информации (в том
числе и достаточно серьезных) появляется
«информация» об инопланетянах, контактах
с ними и даже об умыкании ими землян
прямо в центрах многомиллионных городов.
Ширятся слухи о начатой операторами
НЛО эвакуации землян в просторы
Вселенной… Нет числа сообщениям о
найденных доказательствах посещения
Земли представителями высокоразвитых
разумных цивилизаций в прошлом…

Занимается ли
вопросом о внеземных цивилизациях
современная наука? И если занимается,
то как она его решает? Прежде всего
следует отметить, что вопрос о внеземных
цивилизациях имеет свою научную
постановку, которая существенно
отличается от его трактовок массовым,
обыденным, вненаучным сознанием.
Современная наука трактует внеземные
цивилизации как общества разумных
существ, которые могут возникать и
существовать вне Земли (на других
планетах, космических телах, в иных
Вселенных, средах и др.).

С позиций современной
науки предположение о возможности
существования внеземных цивилизаций
имеет объективные основания: представление
о материальном единстве мира; о развитии,
эволюции материи как всеобщем ее
свойстве; данные естествознания о
закономерном, естественном характере
происхождения и эволюции жизни, а также
происхождения и эволюции человека на
Земле; астрономические данные о том,
что Солнце — типичная, рядовая звезда
нашей Галактики и нет оснований для его
выделения среди множества других
подобных звезд; в то же время астрономия
исходит из того, что в Космосе существует
большое разнообразие физических условий,
что может привести в принципе к
возникновению самых разнообразных форм
высокоорганизованной материи.

Оценка возможной
распространенности внеземных (космических)
цивилизаций в нашей Галактике
осуществляется по формуле Дрейка:

N=R
• f
• n
• k
• d
• q
• L.

где
N
— число внеземных цивилизаций в
Галактике; R
— скорость образования звезд в Галактике,
усредненная по всему времени ее
существования (число звезд в год); f
— доля звезд,
обладающих планетными системами; n
— среднее число планет, входящих в
планетные системы и экологически
пригодных для жизни; k
— доля планет, на которых действительно
возникла жизнь; d
доля планет, на которых после возникновения
жизни развились ее разумные формы; q
— доля планет, на которых разумная жизнь
достигала фазы, обеспечивающей возможность
связи с другими мирами, цивилизациями;
L
— средняя продолжительность существования
таких внеземных (космических, технических)
цивилизаций.

За
исключением первой величины (R),
которая относится к астрофизике и может
быть подсчитана более или менее точно
(около 10 звезд в год), все остальные
величины являются весьма и весьма
неопределенными, поэтому они определяются
компетентными учеными на основе
экспертных оценок, которые, разумеется,
носят субъективных характер.

Вот как, например,
оценивается вероятность возникновения
жизни. Ясно, что далеко не на всякой
планете может возникнуть жизнь. Для
возникновения жизни (посредством
естественного отбора) необходим сложный
комплекс условий.

Во-первых,
значительные интервалы времени; поэтому
жизнь может возникнуть только вокруг
старых звезд. Причем старых звезд не
первого, а второго поколения, поскольку
только рядом с ними могут быть остатки
тяжелых элементов, оставшиеся после
взрывов сверхновых звезд первого
поколения.

Во-вторых,
на планете должны быть соответствующие
температурные условия: слишком высокая
или слишком низкая температуры исключают
появление жизни.

В-третьих,
масса планеты не должна быть слишком
маленькой. Ведь в этом случае планета
быстро теряет свою атмосферу, которая
попросту испаряется («диссипация»). Чем
легче газ, тем быстрее он уходит за
пределы планеты. С другой стороны, масса
планеты не должна быть очень большой,
чтобы не удерживать свою первоначальную
атмосферу (из водорода и гелия), не
препятствовать изменению ее состава и
появлению вторичной атмосферы.

В-четвертых,
наличие жидкой оболочки на ее поверхности.
Ведь первичные формы жизни скорее всего
возникли в воде.

И наконец, в — п я
т ы х, на планете должны быть условия
для возникновения сложных молекулярных
соединений, на основе которых могут
протекать разнообразные химические
процессы.

В
результате учета всех этих условий
оказывается, что лишь у 1—2% всех звезд
в Галактике могут быть планетные системы
с явлениями жизни. Иначе говоря, при
самых оптимальных оценках около 1 млрд
звезд могут иметь планетные системы,
на которых в принципе возможна жизнь
*. В целом остается большой и неопределенность
в оценке общей величины N:
от 109
цивилизаций в Галактике до одной
цивилизации в нескольких соседних
галактиках.

* Что касается
Солнечной системы, то современная
астрономия пришла к выводу о невозможности
существования высокоразвитой жизни на
других планетах. Лишь на Марсе, по-видимому,
могут быть простейшие формы жизни.

Расстояние между
цивилизациями,

св.год

Число
цивилизаций N

7000

102

1500

104

320

106

32

109

Как один из
аргументов в пользу того, что внеземные
цивилизации — явление очень редкое,
выдвигается отсутствие видимых проявлений
их активности. Но это утверждение тоже
недостаточно строгое. Оно определяется
во многом уровнем развития нашей
цивилизации, в том числе и совершенством
средств астрономических наблюдений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Сценарии будущего вселенной кратко
  • Сценарии больших спортивных праздников
  • Сценарии болид арм орион про
  • Сценарии биксби 4пда
  • Сценарии биксби 4pda